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Gravitational Stability of Local Strings
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The full coupled gravity-string field equations are considered, and they are used to show that a general
local string will have an asymptotically conical structure. For the case of the Abelian Higgs model with
U(1) gauge invariance, the gravitational field of a simple local string to first order in Grt is exhibited.
Then a C-energy argument is used to suggest stability at this linearized level.

PACS numbers: 98.80.Cq, 04.20.Jb, 11.17.+y

There has been a lot of interest recently in the cosmo-
logical implications of cosmic strings. These are one of a
family of so-called topological defects which can arise
during the evolution of the early Universe. (See, e.g. ,
Vilenkin' for a review. )

In describing particle interactions, one is often in-
terested in the behavior of some Higgs field p that is pos-
sibly coupled to some gauge fields 4„. The evolution of
these fields may be described by a Lagrangean L which
has an associated symmetry group G. We are concerned
with the case where the field potential energy at low tem-
peratures has the form of a A, op interaction with spon-
taneous symmetry breaking. Then, during the develop-
ment of the Universe, there could be a phase transition
to a spontaneously broken symmetry state, where the
vacuum acquires a nonzero expectation value g, thus
leaving a residual symmetry group H. If the vacuum
manifold (which is isomorphic to G/H) is nonsimply
connected, then it is highly probable that cosmic strings
will form.

Of particular interest are the gravitational fields of
these strings, for, although they are locally weakly gravi-
tating, it is not immediately obvious that the eAect of an
infinite string (containing an infinite amount of energy)
will be equally small. For example, in the case of an
infinite tube of low-density pressureless dust, the cir-
cumstances of circles of arbitrarily large radii become
arbitrarily small. Clearly we need to consider the full
coupled gravitational-Higgs-gauge equations of motion
to analyze the asymptotic (i.e. , far from the string)
structure of our space-time. While the questions of ex-
istence and uniqueness of solutions have been addressed
recently by Garfinkle, following earlier work reviewed
in Ref. l, neither a detailed discussion of boundary con-
ditions nor a stability analysis has been carried out.

Let us consider the idealized situation of an infinite
straight static string. Because this system exhibits cylin-
drical symmetry, we may write the line element in the
form4

ds =e '" ~ (dt —dr ) —e ~dz —a e ~d0

where y, ttf, and a are functions of r only. Since I intend
to produce nonsingular solutions, I shall impose the

and a —r, as r 0. Thus space-time along the center of
the string is locally flat, and we avoid making any state-
ment on the asymptotic structure of the space-time.

Because our system is assumed cylindrically sym-

metric, the string fields are z and t independent; thus the
only contribution to the z-z and t-t components of the
energy-momentum tensor is via the term proportional to
the metric, and hence T 0=T', . As mentioned in the
introduction, we take Xo to be the self-interaction cou-

pling constant, and g the symmetry-breaking scale. It
then proves useful to introduce the dimensionless vari-

ables

p= Jk()tlr, a = jk()tea, e=8trGtl,

E = T o/Rot), —
Pp = T'„/kori, —Pe = Tee/k()rl4.

These have been chosen so that the new energies and
pressures will have typical order of' magnitude 1 (at
most), and the radius of the string likewise. e is the pa-
rameter which represents the local gravitational strength
of the string and will be assumed small. (On physical
grounds, e is typically of order 10 . )

We find that the gravitational-field equations (as stat-
ed in Ref. 4) simplify to the following:

a = eaer(E Pq),

(a y') ' = + eae «(Pq+ Ptt),

a'y' = eae~Pp+ 4 uy',

2 l//,

(2)

(3)

(4)

where y'=dy/dp, etc. We also have the equation of
motion for the fields:

P~+ (P~ —Pa)a'/a+ —,
' y'(P~+Pe)+ y'E =0. (s)

Locally, at least, this system of equations plus bound-
ary conditions determines a unique solution. However,
we require a somewhat stronger statement upon the
asymptotic structure of the space-time. I will show that,

boundary conditions of elementary flatness on the sym-

metry axis, i.e.,

y(0) = tlt(0) =0,
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provided that the energy density satisfies certain falloff
conditions (stated below) and that the string is suitably
weakly gravitating, the space-time is asymptotically con-
ical. First, I note that if we make no assumptions other
than dominant energy and nonsingularity of the space-
time (a&0) for p&0,

y'=2a'[1 —(1 —eerie /a' )' ]/a,

which may be rewritten as

y' =2[a' f '~'(p—)]/a,

(7)

where f(p) =a' —eerP~a Note th. at our boundary
conditions at the axis imply f(0) = l. In order to
preserve the sign choice in (7), we need to prove that
f(p) & 0 for all p.

Assume the contrary, i.e. , that there exists an R & 0 at
which f has its first zero. Now, by continuity of y, there
exists a 6 & R such that er & 2 on [O,h]. We first esti-
mate a' on [0,5] using (1) and (6):

fPa'=1 —e„' ae "(E—P~)dp~ 1
—eAp, (8)Jp

where A =sup(E P~) on [O, A]—. Then f~ (1 —eAp )
—2eBp where B =sup

~ P~ ~
on [0,5]. Since f & 0 on

[O,h], the elementary inequality (1 —x) '~ ~ 1
—

~
x

~

for x & 1 implies

y' ~ 2ee ~
~ P~ ~

a/a' ~ 4epB/(1 —eAp ).

Therefore y'=O(e) on [O, d] for 6=1, but we see that
we may choose 6=1 without violating f &0. Equation
(7) applied on [A, R] gives y' ~ 2a'/a and, hence,
er ~ 2(p/6) . Similarly, on [A, R],

( Ra'~ 1
—each —

J 2ep(p/6) (E —Pp)dp

Provided that E, P~, and P& fall off sufficiently fast
[O(1/p )] as p ~, we have that a'~ 1

—O(e), and
hence f=1 —O(e), at p=R, thus contradicting the orig-
inal assumption about R. We may now use y'~ 2a'/a
on [A, ~] to conclude that

Jt e "(E—P~)dp & ~;
hence, the asymptotic solution to (1) is

e —Ap+8, p

and that in fact y C as p
For a local string we expect E, P~ and P& to decay ex-

ponentially, so that our falloff' conditions are easily
satisfied. We can conclude the our space-time does
indeed look asymptotically conical with a deficit angle
proportional to 1

—Ae . Note that this behavior can-
not persist to the axis: The eA'ect of the matter is to
smooth out the apex of the cone, so that space-time be-

0&@(p, p)0.
Second, if we regard (3) as a quadratic equation for y',
regularity at the axis singles out the negative root, giving

comes flat at the axis. The spatial r —0 sections could
therefore be likened to snub-nosed cones.

So far we have been considering only string solutions
in genera1. To be specific, let us consider a local string
formed in the theory described by the U(1)-
gauge-invariant Lagrangean

L =D„p'D"y —, f„.F—"" —,
' k—o(y'p —rl')'

Our string is thus a general-relativistic generalization of
the Nielsen-Olesen vortex.

We shall consider only the simple string

y = re(r)e",
since we suspect that higher-order strings will be unsta-
ble. Setting e as the gauge-coupling constant, we may
then write

W„= (I/e) [P(r) —1]V„e.

Then, in terms of the new fields P and L, the Lagrange-
an becomes

4 „Xq+e"X P +P' + (X —1)
pg

0 0 4

(10)
Note that I have set 2e =Xp, so that the width of the
gauge part of the string is the same as that of the scalar
part.

From observations of the isotropy of the microwave
background radiation, and other limits based on gravita-
tional radiation, we are provided with an upper bound
on our string parameters, viz. , Gg ~ 10 ((1. There-
fore we may expand the fields as an asymptotic series in
powers of e, i.e. ,

a=pe an,
0

etc. , and use an iterative procedure to find e, y, L and
P.

To zeroth order (IIat space), ap=p, yp=0, and we
know that the solutions to the equations of motion (5)
have exponentially decaying L, P, and hence E, P~, and
P~. To first order, we find

fP fPa= 1
—e„p(Ep+P~) dp p+e p (Ep+P~) dp,

E ' pPpp dp.

Thus, to first order in e, the deficit angle of our snub-
nosed cone is

6'0 =2z(1 —a 'e r) =2ze &~ pEp dp

=8+G Jt 2grr T p dr,
0

i.e. , 60=8+Gp, where p is the flat-space energy density
of the string. Note that the fortuitous cancellation of the
radial stresses means that this is in agreement with pre-
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vious results which assumed that these stresses van-
ished.

Suppose, however, that we try to perform a similar
analysis for the corresponding U(1) global string, i.e. , a
vortex solution with Lagrangean

L =V„y'V~y —
—,
' k, (y'y —tl') '

= —X,q'[e —~X'+ e rX'/a'+ (X' —1) '/4]

in the previous notation. Then we find

P =+X'e -r —X'e~/a' —(X' —1)'/4

Pp+Pg = —(X —1) /2 ~ 0.

E P, =X'—e ~/a '+ (X' 1) '/4. —

Hence (2) and (6) imply that y will diverge at least as
fast as —Clnp as p ~, where C is a positive constant ~

Notice that we have already lost our asymptotically coni-
cal structure. The assumption of nonnegativity of cr,

which implies a ~ 0, also implies that 6' is nonnegative;
in particular, we see that e is bounded away from zero
for large p. Equation (g) then gives us some necessary
conditions for nonnegativity of e', viz. ,

J" (X'e "/a)dp & ~,
(12)

Jt [acr(X —1) '/4]dp & ~,
0

and, hence,

Jt [I e "/a ]dp & ~, Jl [e "(X —1) /4]dp & ~.
0 0

Therefore by the previous argument, a —Ap+ 8 as
p~ oo

However, for a vortex solution A 1 as p ~ at
least as fast as some negative power of p; this, together
with (12), suffices to ensure that aerP~ =O(p ') for
some v& 1 as p ~. Thus to leading order in p, (3)
becomes

Q f =4 Qf

To first order, we obtain

r

E = (e/4G) J pEodp

Because the string fields die ofl exponentially fast, this
integral has an efIective cutoA radius at the width of the
string. At this linearized level, we can regard the C en-
ergy as being the sum of a "matter" part and a "gravita-
tional" part. In the static case, the matter part is simply
the energy density per unit length, the gravitational part
exterior to the string does not contribute since the
space-time exterior to the string is locally flat, and the
contribution of the geometry inside the string appears as
a second-order eflect. We expect this split to hold in the
time-dependent case. Thus at this linearized level, we
expect perturbations which contribute to the C energy to
be perturbations to the geometry exterior to the string
core, and perturbations to the string fields within the
core.

For our static solution, the contribution of the
geometry exterior to the string core is zero, and applying
Thorne's C-energy minimum principle to annuli sur-
rounding the string core (of arbitrarily large radii), we
see that the C-energy contribution of any finite but arbi-
trarily large perturbation to the exterior geometry will be
nonnegative.

Now consider the contribution due to the string fields.
This has the form

pl
Es = Jl pEodp

JI pro + 4 p(A' —1) + + dp4«p p

(P('i'/p) dp.

which cannot be satisfied since y'&0. This shows that
the assumption that 6& 0 cannot be true. Thus these
global strings do not have a well-behaved asymptotic
structure; this is not entirely surprising, as even their
flat-space energy density per unit length is divergent.

Within this "linearized" approximation, we can exam-
ine the stability of the local string. I shall argue stability
on energetic grounds, using a definition of energy ap-
propriate to cylindrically symmetric systems —the C en-
ergy. I choose to apply a relativistic energy analysis
(rather than Newtonian), for the simple reason that in
the analogous problem of stability of an electromagnetic
vortex, C energy correctly predicts stability, whereas a
Newtonian analysis indicates instability. '

The total C energy per unit length of our system is

E, = (1/4G) [y (~ ) —
1 n a '( ) ],

Because our field configuration satisfies the classical
variational equations of motion, it sits at a local
minimum energy configuration; we therefore deduce that
our static-string configuration is sitting at a local C-
energy rninirnum and is therefore stable to small pertur-
bations. However, it may be possible that a large radial
perturbation could collapse the string to zero width
forming a conical singularity. By causality, this process
could only occur in a finite time if a finite amount of C
energy were involved.

To mimic such a collapse scenario, we shall replace p
by f(p, t) where f is monotonic in p for fixed t, and to
preserve the boundary conditions, we require f(O, t) =0
and f'(O, t) =1. To mimic radial collapse in time T, we
set f(p, O) =p, and f(p, t) 0 as t T, but f is other-
wise arbitrary. Under such a transformation, we note
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that

(Po2/p) dp dp

as t T.

p f(I,I)
(1/f) (dPQ/df ) df

t 1

=J, (p/ff')(Po'/p) dp—

linearized theory, such local strings are resistant to radi-
al collapse.

I would like to thank J. M. Stewart and R. H. Bran-
denberger for their interest and useful suggestions in this
work, which was carried out during the tenure of a Sci-
ence and Engineering Research Council studentship.

Now the contribution of the matter fields to the C energy
consists of a kinetic part and a potential part, each of
which is nonnegative; hence, the total C energy per unit
length of our perturbed system will be greater than the
contribution of the potential of the matter fields. How-
ever, this is bounded below by the integral of Po /p
which becomes unboundedly large as the collapse
proceeds. We deduce that an infinite total C energy per
unit length would be involved in cylindrical radial col-
lapse, and therefore such collapse is prohibited within
linearized theory.

By considering the full set of field equations for a stat-
ic cylindrically symmetric string system, I have shown
that the surrounding space-time is asymptotically coni-
cal, provided that the energies and pressures decay rap-
idly enough.

For the particular case of the Abelian Higgs model
with U(l) gauge invariance, I have exhibited a local
string solution to first order in Gg, and find that the
asymptotic deficit angle is SnGp. Application of the
same techniques to the corresponding U(l) global string
shows that there is no regular asymptotic structure.

Finally, a C-energy argument shows that, within a
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