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Discontinuous Metal-Insulator Transitions and Fermi-Liquid Behavior of Correlated Electrons
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A simple thermodynamic theory is given of the metal-insulator transitions concurrent with a localiza-
tion of electrons in a half-filled correlated band. The approach supplies a complete phase diagram for
the system (V~-„Cr„)203. We show also that for an almost half-filled band the disappearance of local
moments is accompanied by a transition to a heavy Fermi liquid.
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We report here on a new theory of interacting elec-
trons in a narrow band at nonzero temperatures (T & 0).
One of the novel aspects is the prediction, for a half-
filled band case, of discontinuous transitions as a func-
tion of T for fixed U/W, where U is the intra-atomic
Coulomb energy and W the bare-particle bandwidth. '

In place of the phenornenological two-fluid model con-
sidered earlier, ' the present theory is based on a one-

phase model of fermions, in a band narrowed by correla-
tions, which transform into a lattice of localized spins.
The theory is used to interpret the three consecutive
metal-insulator transitions (M IT' s) and, in particular,
the reentrant metallic behavior of the (Vt „Cr„)203 al-

loy system. The M IT in the paramagnetic phase of
this system has been interpreted previously in terms of
the Mott transition and later, within the Hubbard
model, with U/W as a variable and at T=O. Our theory
yields the previous results in the limit T 0, in addition
to the reentrant features and the full phase diagram at
higher temperatures. In this way, we ofTer a resolution
of the long-standing problem of the nature of the spec-
tacular MIT's observed in (V~ „Cr )q03. Further-
more, for the case of the less than half-filled band we

formulate the conditions under which the correlated me-

tallic system with local moments transforms into a Fermi
liquid with a large eA'ective mass. Our results thus sup-
plement earlier detailed Fermi-liquid descriptions of al-
most localized correlated systems; see, e.g. , Anderson
and Brinkman and the reviews by Vollhardt and by
Ramakrishnan.

Prior treatments of MIT's based on the functional-
integration technique lead to continuous transitions with

temperature. The experimentally observed discontinui-
ties were ascribed to lattice instabilities; also, no r|.'en-
trant metallic behavior was reported. An alternative
six-parameter theory does incorporate some of the
features reported below, but the fit to observed conduc-
tivity data is very marginal. An approach to the

correlated-electron liquid for an almost half-filled band
has been developed recently' and applied to the heavy-
fermion system UBe13. The entropy expression of Rice
et al. ' interpolates phenomenologically between the
Fermi-liquid and localized-moment regimes.

As is well-known, when U=W the band energy E~
(0 and correlation energy E, & 0 become comparable.

In the present theory' E, =Up, as well as the balance of
the energies, is determined variationally by optimizing of
the two-electron correlation function tl—= (n;tn;t) which
describes the probability that a typical site is doubly oc-
cupied by electrons of opposite spin. The band energy
Ett is characterized by a band-narrowing factor C&(tl)
which attends to the suppression as U/ W increases of the
hopping processes involving doubly occupied states. We
discuss first the transitions in the paramagnetic phase for
the half-filled band case (n =1).

Following the procedure of I which is a reformulation
of the Gutzwiller approach, we write the total energy at
T =0 as Ett+E, =&(ri)e'+Urt, where e is the average
bare-band energy per particle and where &D(tl) =8tl(1
—2tl). As implicit in the later analysis, @ may be
identified with the inverse effective-mass enhancement
m*/mo, which derives in the Gutzwiller approach from
the slow variation of the electron energy shift with
momentum. On minimizing the total energy with
respect to tl one obtains tl —=rlo= —,

' (1 —U/8
~ e~ ) for U

& 8
~ e~, and tin=0 for U~ 8

~
e ~; the cases tl & 0 and

q =0 correspond to the paramagnetic metallic (PM) and
paramagnetic insulating states. Hence, at T=O we re-
cover the well-known result of Brinkman and Rice.

Since close to the metal-insulator transition &0
~

e
~

and
Ug are of comparable magnitude, the balance between
them at T & 0 will be affected by the much smaller en-
tropy contribution. The basic postulate introduced at
this point is that the same factor also enters the expres-
sion for the quasiparticle energy E~=&e1„where t ~ is
the energy of state k in the uncorrelated band. By this
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device we maintain k as a good quantum number under the restrictions on the hopping of electrons imposed by intra-
atomic interactions. This allows us to start from the following expression for the Helmholtz free energy per site:

F kgT—=—g elfg+ U ri+ g [fg lnfg+ (1 —fq) ln (I —f~) ],
N N ~ N

where fg= Ie xp[( ~e
—p)/kaT*]+ I ] ' is the Fermi-

Dirac distribution function for quasiparticles represent-
ing the correlated electrons (the Fermi level p =0 coin-
cides with the zero of energy), T*= T/&b is an effective
temperature, and N is the number of sites. One sees that
Eq. (1) represents the free-energy functional for a Fermi
liquid with quasiparticle energies E~ and with the Lan-
dau term for particle scattering replaced by Ug. Fur-
thermore, the effective-mass renormalization m */mp
= I/& is calculated self-consistently by minimization of
F with respect to tl. The expansion (1) may be rewritten
as

1'p=2tr pp(pp)kB/3 being the linear specific-heat coeffi-
cient for bare electrons; pp(pp) is the density of states
per spin and per site at the bare Fermi level po. Mini-
mizing Eq. (3) with respect to tl we find that tl(T) =tip
—aT, and @=Up —UaT /~ e ~, where a =Uyp/64&pe

and Np=—@(tip). Substituting these expressions back into
Eq. (3) we obtain the free energy as

(4a)F(T)/N =e(1 U/U ) 2 (yp/+p) T,
where U, =8

~
e~. Similarly, the internal energy is given

byF(T)/N =N(tl )Fp(T* )/N+ Uq, (2)

where Fp(T*) is the free energy of the electron gas at
temperature T*. Strictly speaking, the validity of
(1) is limited to the low Tregime ka-T«@~ e~, since
interacting systems only the electrons near the Fe
surface can be regarded as obeying the Fermi-Dirac
tribution f~ In this lim. it, we can disregard the additi
al solution q=0, s=2kqN ln2 appearing when we mi

mize (1) numerically with respect to tl. Hence, Eq.
is discussed in terms of a Sommerfeld-type expansion
the order T:

(4b)E(T)/N =e(1 —U/U ) + ~ (yp/Np)T,

F/N =&be+ Utl —()p/2@) T,

with (pp= 1
—(U/U ) . Clearly, the bare-particle elec-

rmi tronic specific heat is enhanced by a factor I/@p which
can become large if g 0. This also means that thed1s-
leading contribution to the thermal energy at low T gives
rise to excitations in the narrowed by correlations bandni-
of fermions.

For the paramagnetic insulator (PI) with localizedto
moments the free energy (per site) is F'/N = —k&TIn2.
The M1T in this case takes p/ace at the coexistence

(3) boundary determined by F=F' which gives rise to the
two solutions

kBT~ =[3&p/2tr pp(pp)][ln2+ [(ln2) ——', tr pp(pp) ~
e

~
(1 —U/U, ) /&p] 't }. (5)

31n2 Ut
8 c 227r pp(pp)

' 2

For U ~ U~, the Fermi-liquid state is stable for all T.
To take antiferromagnetic (AF) ordering effects into

account we assume that the interaction between cation
sites is represented by the kinetic exchange invoked by
Anderson for Mott insulators and extended later to
strongly correlated metals. ' ' Consistent with our earlier
procedure (see I), only the portion 1

—& of electrons in a

Thus, in the range where Eq. (4) is valid there are two
transitions at T = T (PM PI) and at T = T+ (PI

PM'). Hence, reentrant metallic behavior is encoun-
tered for T ~ T+. These two transition lines meet at a
critical point: The lower critical value of U =U~, is given
by

Ut, J3 In 2 1

Uc 2tr [pp(pp) ~

e~]'t' '

and the corresponding critical temperature T = T, is
specified by

correlated metallic system (U( U, ) is affected by this
exchange. We specify the exchange constant by
J = (W /Z U) (1 —@),where Z is the number of nearest
neighbors (Z =4 for V203). The above reduces to
J =4t /U in the insulating phase for which tl =& =0. In
general, the kinetic exchange Hamiltonian has the form

H„=J g [S, S —
—,
' (1 —2 g, ) (1 —2 g, )],

(i,j &

(8)

leads in the mean-field approximation (and if we keep ti
as a variational variable) to the Slater splitting of the
band narrowed by correlation eAects. For quasiparticles
in subbands of the form ~ [(Neq) +h ] 't the band gap
is given by 26 =JZ(S'); at low temperature the material
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in which the summation (i,j) is restricted to nearest-
neighboring pairs (each counted once), and tl; =n;tn;t
The exchange part (8), when added to the band and
correlation parts

E(T)/N = (1/N) pe(ri) e+g + Up,
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is then an antiferromagnetic Slater insulator (AFS) for n =1. For the rectangular density of states both the magnetic
moment (S') =(n; I

—n;I)/2 at T =0 and the ground-state energy Fo can be calculated explicitly. One finds that

(S-) = (CW/JZ )/sinh (24& W/JZ), (10)

and

P A"s/WN = —' [A/2+ (JZ(S~)/W) z] ~t + (U/W) tI
—(JZ/11 W) (I —2tI)

Because of inclusion of the band-narrowing factor + in

(10) and (11), the present formulation connects the
standard Slater band insul-ator to the localized (Mott)
antiferromagnetic insulator (AFI), the latter represent-
ing the limiting case g 0. In this way we unify the two
historically different descriptions of antiferromagnetism
in a narrow band.

For V203 and (V~,Cr )z03 systems with the mag-
netic moment p =1@~one has the Curie-Weiss temper-
ature k aOJv/W = —,

' JZ/ W =0.023 and 0.031 for U/W
=1.65 and 2.0, respectively. Setting W=-1 eV one ob-
tains 0~ =300 and 450 K, as compared to 0~ =350 K
for the alloys with x ~ 0.035. The temperature of the
AF PM transition (TMt~) is in the range 150—200 K,
i.e. , well below 0~, furthermore, a discontinuous change
in susceptibility occurs at the transition. ' These and
other data show that the AF PM transition intervenes,
well before the actual Neel temperature TN is reached.

As before, we redefine the AF PM phase boundary

by the coexistence condition FAF =FpM. For the case of
interest, TM&T« Tz, we assume for the sake of simplicity
that FAF=EG, i.e. , we neglect the spin-wave contribu-AF

tion (—T ) to the free energy, which should not qualita-
tively change the results. The transition temperature
TM~T is then given by

S /Nk a = n 1n 2 —n inn —(1 —n ) 1 n (I —n ). (13)

T(K) '

700-
/

/
/

/
/

/
/

/
soo—

600—

,~cp

! low-temperature expansion which may not be appropri-
ate for T ~ T+, particularly for larger values of U/W.

Finally, we determine the stability of a paramagnetic
Fermi liquid (PM phase) for the band slightly less than
half filled (n & I ); the system should be then always me-
tallic, even for U/W)) 1. This can be demonstrated by
our noting that for n & 1 the band-narrowing factor for
rI =0 is (see 1) &9 = (1 —n)/(I —n/2) a0. However, then
a metallic phase with local moments present is conceiv-
able, ' particularly at high correlations, which corre-
sponds to the PI phase for n =1. In order to construct
the free energy F for such a phase with the local mo-
ments (the PLM phase) we write down the entropy S„,
in this case in the form '

i/2 ' 2
k g TIyl~T

e 1—
yp U,

EAF
G

- I/2

(12)
400—

0%04 Bpp

The phase diagram resulting from comparison of the free
energies of PM, PI, and AF phases is plotted in Fig. 1.
The rectangular form of the density of states has been
chosen. One observes several interesting features. First,
there appear two metallic phases: one bounded by the
two insulating phases (AFS and PI) and one exemplify-
ing reentrant metallic behavior at high temperatures.
Second, the AFS, AFI, PM, and PI meet at a tricritical
point (TCP); the other two were discussed above. All
those features are observed in (V~ „Cr„)203 alloy sys-

tems, as is shown in the inset of Fig. 1.
There is one qualitative discrepancy between the

theory and experiment: The transition line PI PM' is

of first order, whereas experimentally a continuous tran-
sition is encountered. We believe that the difference is

due to the fact that we have neglected entirely the lattice
eAects which may be important and tend to smear out
the weakly discontinuous PI PM ' transition which
takes place above 500 K. Additionally, we have used the

OP3—
CP

0,02— FS /AFI

0,01
1,4 1,5

I

U/W = 1,6

FIG. 1. Phase diagram on the plane T U/W of possible-
metal-insulator transitions. CP denotes critical points and
TCP tricritical point. Note reentrant metallic phases: one
sandwiching AFS and PI phases, and one at high tempera-
tures. inset: Experimental transitions in the T-x plane for
(V, .Cr„)~03.

730



VOLUME 59, NUMBER 6 PHYSICAL REVIEW LETTERS 10 AvuUsx 1987

This expression is based on the number of distinct configurations for a system of N, —:nN particles distributed among N
sites with double occupancies excluded (tI =0) which is 2 '[N!/N, !(N —lV, )!]. Equation (13) reduces to ln2 for n 1.N,

Taking into account that F =i(I —n)/(I —
—,
' n) —TS, one can write as the coexistence condition of PM and PLM

phases the expression F =F. This leads to the transition temperatures

0 aT ~ = [3&ho/2z po(po)] [n ln(2/n) —(I —n)ln(l —n) + Wh], (14)

with

Ut!+ bb —(I —n)/(I —
—,
' n)]

n ln ——( I —n ) In ( I —n ) + po(po)
n 3

(Is)

Note that now eo is give~ by eo=fo+fir)o+f2t!o,
where the coefficients f; are specified in I, and
rio=(n /4)(I —U/U, ). For n I, Eq. (14) reduces to
Eq. (5). The transition lines T ~ terminate from the low
correlation side at a critical point (Ui„T,). In the
strongly correlated limit U & U, =28' only the PLM
phase is stable at all T. The important point is that for
n —1 the effective mass both in the PM phase and in the
PLM phase is then large, since then m*/ma= I/&o=(I
—

—,
' n) (I —n) )) 1. The di[Terence between the PLM

and the PM phases is that for n 1 at high tempera-
tures the molar entropy of the PLM phase approaches
R ln2 while in the latter case it approaches 2Rln2, where
R is the gas constant. For n & I, Eq. (13) yields an en-
tropy of the PLM phase intermediate between these two
values, depending on the deviation 6=1 —n in any given
system. This circumstance oAers a resolution of the mu-
tually exclusive conclusions reached concerning the
asymptotic value of the entropy in Ref. 6 and Mayer et
a/. ' for the heavy-fermion system UBe]3.

In summary, we have calculated the boundary be-
tween the Fermi-liquid and the local-moment phases.
Further work is needed in order to unify the present ap-
proach with the phenomenological two-fluid models of
MIT's' and of liquid He in the normal phase. '
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