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Beyond Steady-State Lamellar Eutectic Growth
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Lamellar eutectics only grow in steady state over a small range of melt compositions between the two
solidus lines of a binary phase diagram. Outside this range their growth exhibits a rich dynamical be-
havior. A random-walk model is constructed to simulate eutectic solidification of a thin film and applied
to study this behavior. In addition to oscillatory modes, a "tilting instability" on the lamellar spacing is
found at oA-eutectic compositions. Well into nonlinear regimes, this instability causes lamellae from the
minor phase to follow convoluted solidification paths thereby generating exotic eutectic textures.

PACS numbers: 61.50.Cj, 05.70.Ln, 64.70.Dv, 81.30.Fb

The theoretical model of Jackson and Hunt' permits
steady-state lamellar eutectic growth to take place at all
melt compositions between the two solidus lines of a
binary eutectic phase diagram. However, in practice,
steady-state growth is limited to a small range of melt
compositions in the vicinity of the eutectic composition.
Our experimental and theoretical knowledge of the wide
variety of non-steady-state modes of growth which can
occur outside this range has remained very limited. On
the experimental side, the best documented non-steady-
state behavior is one in which dendrites of one solid
phase and lamellar eutectics both coexist. This situa-
tion is observed at oA'-eutectic compositions when the
growth of one solid phase becomes sufticiently enhanced
to cause dendrites of this phase to emerge ahead of the
eutectic interface. There is also experimental evidence
for dynamical modes of growth in which dendrites are
absent. One of them is an oscillatory mode on twice the
lamellar spacing which causes lamellae from the minor
phase (the phase of smaller volume fraction) to follow
sinusoidal solidification paths, as opposed to the vertical
paths followed during steady-state growth. Other
modes, which seem to involve more convoluted
solidification paths of these lamellae, generate complex
eutectic patterns ranging from orderly to chaotic.

One important tool which is missing at this point to
develop a systematic understanding of the mechanisms
underlying the formation of these intricate eutectic
solidification patterns is a numerical algorithm capable
of simulating the motion of a eutectic solidification front.
To construct such an algorithm, even for the simplest
two-dimensional situation characteristic of thin films,
represents a formidable task since one must add the con-
straint of mechanical equilibrium at solid-solid-liquid tri-
ple points (where three phases meet in space) to the al-
ready existing difticulties of the free-boundary problem
for a single solid phase. The main purposes of this
Letter are, first, to show how this task can be accom-
plished by the extension to three phases of the random-
walk model developed by Kadanoff, Tang, and Liang
for viscous flow in a Hele-Shaw cell, and, second, to

v =v 2/A —1/A, A =X/k

where X —(hT) ' is the spacing at which the growth
velocity reaches its maximum value v —(hT) . We
further restrict our attention to the experimentally
relevant limit of small thermal undercoolings where
growth occurs slowly and the diflusion equation can be
approximated by the Laplacian. The motion of the eu-
tectic interface is then governed by

V H=O, (2)

conservation of mass at both solid-liquid interfaces,

V„=—n V„, e phase, (3a)

QV„=n Vu, P phase, (3b)

local thermodynamic equilibrium at the interface
(Gibbs- Thomson relations),

u(a) =ATm, ' —d, tc, a phase, (4a)

u (P) = —ATmp ' +d~ tc, P phase, (4b)

and the constraint of mechanical equilibrium which re-
quires the sum of surface tensions to vanish at a triple

show that these patterns which have been observed ex-
perimentally can be understood as consequences of
diftusional instabilities occurring on the scale of the
lamellar spacing at su5ciently oA-eutectic melt composi-
tions. In addition, our results demonstrate the practical
utility of random-walk computational methods for simu-
lating realistic models of complex processes.

We consider the simplest situation of free eutectic
growth at fixed thermal undercooling h, T=T~ To in

the absence of temperature gradient, where TE and To
are respectively the eutectic temperature and the iso-
thermal temperature of the interface. The Jackson-Hunt
model for free growth predicts a one-parameter family of
steady states with lamellar spacings and growth veloci-
ties related by
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point,
Jl

(TLatLa+ ~LPtLP+ (TaPtaP (s)

where t~, is a unit vector which is tangent to the y-v in-

terface at a triple point and points away from this point.
Here cr,p is the a-P surface tension, ols is the L-5 sur-
face tension, m, is the liquidus slope of each phase
dT/du defined to be positive, d, =ot, TE/m, L, and L,
are respectively the capillary length and latent heat per
unit volume of each phase (s =a,P), x- is the local inter-
facial curvature, u = (C —C~ )/AC is a dimensionless
composition field where C denotes the concentration of
one of the components, for example, the number of B
rnolecules per unit volume for a two-component system
consisting of 2 and B rnolecules, C, is the concentration
of each solid phase, h, C—= C~ —C & 0 is the miscibility

gap, CE is the eutectic concentration, and C is the con-
centration in the sample far ahead of the solidification
front. In addition, we have defined V„=( —u, )v„/D
where i„is the local normal velocity of the interface, D
is the coefficient of solute difl'usivity, and Q=ug( —u, )
with u, —=(C, —CE)/AC (u & 0, up & 0). Finally, the
exponentially decaying part of u in the upward z direc-
tion is translated, in the Laplacian limit of the diffusion
equation, into a linear gradient boundary condition on u

far ahead of the interface where, in steady state,

(B,u ) = (v/D) (C —CE)/aC=—(v/D) u

with C =C, tt+C&(1 —tI); iI=X,/) is the volume frac-
tion of the a phase, X, (s =a, P) is the lamellar width of
each phase, and k =k, +kp is the lamellar spacing.

We now describe a random-walk model which can
simulate Eqs. (2)-(5). The model and its results are
only briefly described here and a more detailed exposi-
tion will be given elsewhere. Points on a two-
dimensional square lattice are divided into three
categories: a and P sites (s sites; s =a, P) represent sites
occupied by the solid a and solid P phases, respectively,
and empty sites (e sites), those occupied by the liquid

phase. The lattice spacing is set equal to unity and 8'
measures the lateral width of the system where periodic
boundary conditions are imposed at the end points. The
interface, from which walkers are released, is composed
of all s sites which have at least one bond connected to
an e site (i.e., the solid-liquid interface). The composi-
tion field u is interpreted as the probability density of
random walkers which is well known to satisfy the La-
place equation. Accordingly, the probability of a walker
being released from a particular s site is given by u(s),
the value of u on the interface. Since u(s) can be both
positive and negative we use the normalized probability
distribution P(s) =

~
u (s)

~
/max[

~
u

~
] and assign to

walkers a flux f(s) equal to the sign of u(s) [f(s)
= + 1], where max[~ u ~] is the maximum value of

~
u

~

on the interface. Each s site on the interface is then
checked sequentially and a random walker carrying a

flux f(s) is released with probability P(s) T. he walk is

terminated when the walker returns to any s site. The
net flux of walkers in all s—e bonds joining s and e sites
is recorded. For each walk the flux f(s, e) in the s—e
bond through which the walker leaves the interface is in-
creased by f(s) and the flux in the s'—e' bond through
which it returns is decreased by f(s) Int. erface motion
at site s is controlled by the normal gradient of u at the
interface, u(s) —u(e), which is proportional to the flux
in the corresponding s—e bond If(s, e) —[u(s)
—u(e)]/4]. Accordingly, the sum g, f(s, e) of fluxes in

all s—e bonds connected to a given e site is evaluated.
This site then becomes occupied by an u site if at least
one of the s—e bonds is of type a—e and the sum

g, f(s, e) exceeds an integer M, or by a P site if at least
one of the bonds is of type P—e and g, f(s, e) is less
than —QM [see Eqs. (3)]. Similarly, an s site is emp-
tied (melting) when the sum g, f(s, e) of fluxes in all
bonds connected to this site is less than —M for s =a or
exceeds QM for s =P. When M is large many walks
take place during the time necessary for the interface to
move one lattice unit and fluctuations in the normal gra-
dient of u at the interface are therefore diminished. In
the limit M ~ deterministic equations of motion are
simulated. Finally, walkers are released from infinity at
ofT-eutectic compositions to simulate the gradient bound-
ary conditions on u.

The last task is to build into the model the constraint
of mechanical equilibrium [Eq. (5)]. To do so we derive
a form of the Gibbs-Thomson relation which takes into
account the interaction energy between the three phases
at triple points. Away from these points this form
reduces to Eqs. (4). In their vicinity, that is, within a
distance r of triple points where r measures the range of
the interaction energy between difTerent phases, this
form causes the composition field u(s) to beome large
when slight deviations from the constraint of mechanical
equilibrium occur. This increase in composition in turn
induces large normal composition gradients which cause
interface motion to smooth out these deviations in a time
much shorter than the time it takes for triple points
to move a distance r. Consider the thermodynamic
potential corresponding to the interfacial region
=g, Q, (s), where

A„(s)= —p,N, —
p~Np

—pl Nl +a,pN, Np

+a, l N, NI +a&1 N+I, (6)

p, is the chemical potential of each phase (v=a, P, L),
%, is the number of lattice sites of each phase contained
inside a circle of radius r centered on site s, and a~, mea-
sures the strength of the interaction energy between the

y and v phases. The corresponding Gibbs-Thomson rela-
tion is then obtained by our imposing the requirement
that A„bestationary against infinitesimal interface de-
formations equivalent to addition or withdrawal of a sur-
face site: 6A, „(s)/r)N, =rltt„(s)/r)Np =0, with the con-
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u(P)+mp ' AT =apl (NL —N~) —(a,L
—a,p)N„

(7b)

where the constants of proportionality between pz —p,
and u(s) + m, 'AT have been absorbed by a suitable
redefinition the a„,'s, and Eqs. (7) determine P(s).
Away from triple points the second terms on the right-
hand sides of Eqs. (7) vanish and NL —N, is proportion-
al to the interfacial curvature: tc=B(r)(NI —N, )/r,
where B(r) —,

' for 1 «r « x '. Equations (7) there-
fore reduce to the fortn of Eqs. (4). Finally, for u(s) to
be continuous at a triple point the right-hand sides of
Eqs. (7) have to scale as r/X and vanish in the limit
r/X 0. This requirement and the constraint N, +Np
+Nz =N, then fix uniquely N, N~, and Nz within a cir-
cle of radius r centered at this point, and consequently
the directions of the t„„'s,in terms of the ar, 's (which
also relates the ar, 's with the a„„'s).

We restrict our attention to a symmetrical binary eu-
tectic phase diagram with m, =mp —=m and Q =1, which
implies g= 2

—u, and choose equal surface tensions
a,L

= a~L =a,~ —=aB (r)/r, which implies N, =Np= NL

=N„/3 and equal 120' angles between the tr, 's at a trip-
le point as shown in Fig. 1 (here these angles diA'er

slightly from 120 because of the inherent anisotropy of
the lattice). All our simulation results are parametrized
in terms of u and A [Eq. (1)]. Measured values of v vs

A agree with Eq. (1) within 20% and, for A ( 1 simula-
tions with about ten lamellae (W=SX), exhibit the clas-
sic long-wavelength instability leading to termination of
lamellae. At suSciently oA'-eutectic compositions we
observe two short-wavelength instabilities [Figs. 2(a)
and 2(b)l: the oscillatory instability at twice X predicted
successfully by the discrete stability analysis of Dayte
and Langer, and a new tilting instability on the lamellar
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xxX x

:x. '

x

x, Xx~xx xx KxxX ~x, x
X

Q

FIG. 1. Steady-state interface at exactly eutectic composi-
tion in a situation where equal surface tensions balance at a
solid-solid-liquid triple point. The width of the system W is

121 lattice units. Sites on the boundary between any two
phases are represented by crosses.

straint N, +Np+ Nz =N„where N, is the total number
of' sites inside the circle of radius r (N„=mr for r)) 1),
and further by our using the fact that u(a) —m, 'AT
~pr p and u(P)+m~ ' AT~ p~

—pL. We obtain

u (a) —m, ' A T = —a,L (NL —N, ) + (a~L —a,p) Np,

(7a)
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FIG. 2. Interface deformations associated with (a) tilting

instability and (b) oscillatory instability. The lamellae bend in

response to a bulge in the interface to preserve the balance of
surface tensions at triple points. (a) W=X =61 and A=1.8,
(b) W =2k =121 and A =1.1, and in both (a) and (b) M =15,
r =5, and u = —

—,'. (b) shows only the late stages of a simu-

lation that started from a slightly perturbed steady-state
growth.

spacing which forces lamellae from the phase of smaller
volume fraction (P phase here) to bend coherently on
one side of the vertical growth axis. The latter was miss-
ing in the stability analysis of Dayte and Langer since
the discrete model on which their calculation is based
cannot describe triple-point displacements caused by in-
terfacial deformations within individual lamellae. At
fixed A the tilting instability first occurs at a more oA-
eutectic composition (larger value of

~
u

~
) than the os-

cillatory one, and at fixed composition it occurs at a
larger value of A. In simulations with u = —

—,
' and

W =2X, oscillations terminate steady-state lamellar
growth when A & A„=1,while in simulations with the
same value of u and W=X, steady states become un-
stable against tilting when A & A„=1.5.

The appearance of both oscillatory and bending modes
can be explained physically by consideration of the de-
stabilizing eAect of the composition gradient ahead of
the interface, (B,u) =t u /D, present at off-eutectic
compositions. The idea that instability of a lamellar eu-
tectic front can arise as a consequence of this eftect was
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pointed out previously by Hurle and brakeman. ' First,
note that in the presence of such a gradient an initially
planar single solid phase (a phase here if we treat the
lamellar eutectic as a single phase) will develop during
its growth a spatially sinusoidal deformation of wave-
length XMs —(d, /~ (t), u)

~
) 'i as a result of the classic

Mullins-Sekerka instability. ' ' Then equating the spatial
period of the interface deformation corresponding to
each mode with RMs [as shown in Figs. 2(a) and 2(b)]
yields the criterion that oscillations and tilting should
first occur when XMs = 2X and XM~ =k, respectively.
These two equalities in turn define two lines in the
(u, A) plane, each line representing the neutral stability
boundary of each mode.

What happens above the onset of short-wavelength in-
stabilities? We find that although these instabilities ter-
minate steady-state growth they do not necessarily lead
directly to the appearance of dendrites. A rich dynami-
cal behavior can take place in between steady states and
dendrites within some range of spacings and composi-
tions. The general understanding of this behavior em-
erging so far from our simulations is that when either in-
stability (oscillatory or tilting) dominates the dynamics,
coherent structures are formed, while in regions where
both instabilities compete the motion of lamellae can be-
come chaotic. The most stunning observation is that the
coherent structures formed when tilting dominates are
composed of convoluted solidification paths of P lamellae
as shown in Fig. 3(a). The dynamical mechanism re-
sponsible for one convolution is explained in a time se-
quence shown in Figs. 3(b) and 3(c). This sequence pro-
vides a good example of catastrophic dynamical events
which can be successfully described by our algorithm.
Solid P lamellae bend sufficiently for their tips to come
in contact with the solid a phase. Figure 3(b) is a
snapshot taken just before contact. After contact, two
new triple points are created and the solidification path
splits two ways. One path solidifies upwards and the
other downwards inside a liquid pocket which becomes
ultimately filled with solid P. Figure 3(c) is a snapshot
taken when the liquid pocket is almost completely
solidified.

Finally, it is worth noting that Fig. 3(b) bears a strik-
ing resemblance to an experimental photograph
displayed in the classic paper by Jackson and Hunt (Fig.
l 5 in Ref. 1) and that there also seems to be evidence for
eutectic structures similar to the one displayed in Fig.
3(a). Additional systematic experimental studies of
oA'-eutectic solidification of thin films are strongly need-
ed at this point: first, to explore further the range of pos-
sible microstructures, and, more fundamentally, to inves-
tigate complex spatiotemporal behaviors ranging from
orderly to chaotic.

(a) (b)

FIG. 3. (a) Exotic eutectic texture; u = —
—,', W=k =61,

M =15, r =5, and A =3. This run took about 30 h of central-
processing-unit time on a Ridge computer. (b), (c) &=X
=121, A =2, u = —4, M =10, and r =5.
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