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The time-dependent Ginzburg-Landau model for spinodal decomposition is studied by use of both a
numerical simulation of the associated Langevin equation and a new low-temperature expansion. Both
methods lead to a growth law for the characteristic domain size I. (t ) t 't .—
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Considerable insight into the growth kinetics of sys-
tems subjected to temperature quenches to unstable re-

gions of the phase diagram has been gained through the
study of time-dependent Ginzburg-Landau (TDGL)
models. We study here the Langevin equation associated
with a TDGL model for spinodal decomposition with a
conserved, scalar order parameter. ' We report results
obtained using two difI'erent approaches. In the first, we

have carried out direct numerical simulations of the
Langevin equation, and we have analyzed the results us-

ing our recently developed renormalization-group
methods for nonequilibrium phenomena. For the first
time, data of sufficiently good quality have been obtained
to make it possible to estimate the growth law for this
model. In the second approach we use a novel analytic
low-temperature expansion technique which is applicable
to the same model. The leading term in this expansion
corresponds to a quench to very low temperatures. The
problem then reduces to an integro-diA'erential equation
which can, at worst, be solved very accurately numerical-
ly. In the analytic approach, quantities of interest can be
calculated at arbitrarily long times. Both approaches
lead to the same result for the growth law of the charac-
teristic domain size, L(t) —t", with n =

4 .

Our results have implications concerning universality
classes for growth kinetics problems. It has often been
assumed that the model studied here would fall in the
same "universality class" as the spin-exchange kinetic Is-
ing model. It appears that this assumption may not be
justified, and that the discrete nature of a conserved
order-parameter variable may be relevant to the deter-
mination of the appropriate growth kinetics class. While
we find here an exponent of 4 for a very wide range of
quenching parameters, previous work on the spin-
exchange kinetic Ising model indicates freezing behav-
ior for quenches to zero temperature and an expo-
nent n = —,

' (the Lifshitz-Slyozov result) for quench-
es to a final quenching temperature TF & 0. Further in-

vestigations of this significance of these diAerences is un-

(ti;(t) ti, (t ')) = kaTrV'6;, 6—(( —t '), (2)

and the total order-parameter conservation law is en-
sured by the discrete Laplacians. The free energy, F,
governing our model is given by

F[tlr] = —,
' Jg,. [ry,2+(Vy;)'+ —,

' uVt4] (3)

and we shall use the parametrization introduced by
Beale, Sarker, and Krumhansl, ' where r = —0, u =1
+8, and It =J/kaT As 0 ~, the va.riables y; become
Ising type. The numerical calculations described below
have been performed on a square lattice. We refer the
reader to previous work" with a nonconserved order pa-
rameter for a detailed discussion of the techniques em-
ployed to solve equations of this type. To average over
the noise the equation is solved a large number of times.
We speak of each solution as a "run. "

In the case of a conserved order parameter, particular
attention must be paid to the analysis of the results, and
to the choice of correlation functions to be collected and
analyzed. The quasistatic structure factor, C(q, t), is
often chosen. Although we have studied this quantity
(see below, and also Ref. 9), one knows ' that it is ex-
tremely difficult to extract a growth law from C(q, t)
data obtained over limited time ranges for a finite sys-
tem. We have, therefore, adopted the much more
efficient procedure of performing a renormalization-
group analysis on our data, using the methods of Refs. 2
and 3, for the block correlation functions introduced
there. We sketch below the salient points of the pro-

der investigation.
The dynamics of a conserved scalar order parameter

y;(t ), defined at site i and time t, are governed by the
Langevin equation:

r)y;/t)t =rV'SF [Vt]/btlt; + q; (t),

where I is a kinetic coefficient and ri;(t) is a Gaussian
noise field which satisfies
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cedure. We consider blocks of size M x M (where
M & N, the size of our system) and define the block
"magnetization" mM as the sum of the variables y;
within the block. The theory is formulated in terms of
the quantities,

RM(t) =(mM), /[M'S(t)], (4)

where the ( ), represent the time-dependent averages
over noise and initial conditions, and S(t) =N 'g, (y;),
is the "local" order parameter. We start our quenches,
for convenience, from the initial condition [y;=Oj. In
general, RM(t) will depend on the location of the final
state in the ordered region of the phase diagram' as
parametrized by K and 0. In the region of parameter
space we have explored [twenty (K, f)) pairs including
five values of 0 ranging from 1.5 to 12, and ten values of
K ranging from 0.8 to 14] this dependence appears not to
aAect the growth law, and for brevity and simplicity it
will be omitted here. Central to our renormalization-
group analysis, as shown in Ref. 3, is the quantity

b +Dt +D 5=0; t5(b =l, t) =l.a a
Bb r)t

(6)

In particular, if D is independent of t, D=Dot (6) has
(]/Dp)the solution h, =b ', which implies ' a growth law

L(t) =Lot ', and scaling under simultaneous rescaling
of space and time.

Our calculations for the functions RM(t) and D have
been for a 32 x 32 system, with checks at larger and

[t) lnRM (t)/t) lnM],
[tilnRM(t)/61nt]M

'

which, in the scaling regime, is independent of M. Fur-
thermore, given a spatial rescaling factor b, there is a
corresponding rescaling factor for the time which
satisfies the partial diAerential equation

smaller sizes to verify that our results are free of finite
size effects for the range of M ( & —,

' N) of interest. We
have chosen our units of time t by taking I k BT = 1. To
plot data obtained for diferent values on K on the same
time scale it is convenient, since K—T, to use the
variable r = tK. We have data for times up to
TM = 1 0-20 in all cases and with spot checks up to

=180. The connection between Langevin and Monte
Carlo times for this model was discussed by Meakin et
al. ' The results there show that 2200 Monte Carlo
steps correspond to r =0.4x7 =2.8. To compare Ising
dynamics is much more difficult. One can form an esti-
mate by comparing the degree of order reached by the
system at time r, as measured by moments of C(q, t) or
the absolute values of R~(t), with corresponding Ising
result. In this way we find corresponding Ising results.
Estimates obtained in this way depend on the quantity
chosen but r =20 corresponds to at the very least 10
Monte Carlo steps' and 10 would be a reasonable
guess. Thus we have results for rather long times. All of
our results are averages over 100 runs. A representative
sample of our results for RM(t) is given in Fig. 1. We
find that for a wide range of M values the product
RM M is independent of M. This holds also in the Is-
ing case and it is a consequence of the conservation law.
Thus the numerator in (5) equals 3. The denominator
appears to be independent of M in the same range. We
are, therefore, in the scaling regime (D independent of
M). To study the remaining dependence of D on time
and other parameters we have considered the value of D
averaged over the weak M fluctuations as a function of
time, for all (K, O) pairs. A portion of these data is

shown in Fig. 2. Within the statistical fluctuations,
which are appreciable, the results appear to be indepen-
dent of time. Furthermore, they depend only weakly on
the values of (K, O) as stated above. We are led, there-
fore, to the result Do =4, which implies L(t) —t 't .
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FIG. 1. The quantity F(M)= R~(t)M' pl—otted as a func-
tion of M for several values of 0, K, and the time parameter T:.

From top to bottom the ten values of (H, K, r) are (2.5, 1.75,
14.0), (1.5, 2.5, 13.75), (2.5, 1.75, 10.5), (1.5, 2.5, 10.0), (2.5,
2.5, 7.5), (5.0, 1.75, 5.25), (12.0, 0.8, 3.4), (12.0, 1.6, 3.2),
(12.0, 0.8, 1.2), and (12.0, 3.2, 0.6).

FIG. 2. The quantity D, defined in Eq. (5), as a function of
r, for several values of (O, K) as follows: open squares, (2.5,
14); circles, (5, 1.75); triangles, (2.5, 2.5); plus signs, (2.5,
1.75); crosses, (2.5, 7); lozenges, (3.5, 14); inverted triangles,
(2.5, 3.5); and filled squares, (1.5, 2.5).
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FIG. 3. The first moment of the structure factor plotted vs r
for (8=1.5, K=10). The squares are the numerical results
and the straight line the best power-law fit which corresponds
to an exponent of 0.27.

We have endeavored to check this against direct simu-
lations. In Fig. 3 we plot results for qi(t), the first mo-
ment of C(q, r), in a more extended time region (rM
=180). The linear best fit to this log-log plot gives an
exponent of =0.27, which is quite compatible with 4 .
Similar results are obtained for other (K, 0) pairs.
These direct results, while supportive of the evidence for
a 4 exponent, would not in themselves be conclusive
since good fits to the form (t —ro) " with to small and
n& 4 can also be obtained.

We turn now to a description of the low-temperature
expansion. A thorough discussion is technically involved
and will be given elsewhere. We outline the main points
here. For the ¹ ector model in the large-N limit, the
first systematic treatment of a TDGL model describing a
quench from a stable to an unstable region was given by
Mazenko and Zannetti (MZ). ' The equation governing
the structure factor in Ref. 15 is formally identical to
that introduced by Langer, Bar-on, and Miller' for a
scalar order parameter. The solution in MZ properly
generates, for N & 1, massless Nambu-Goldstone (NG)
modes [C(q, t ~)—1/q ] whose growth one can fol-
low. As pointed out by Billotet and Binder, ' a problem
with the Langer, Bar-on, and Miller approximation, for
N=1, is that one still obtains NG modes in the final
equilibrium structure factor; this should be replaced by a
standard Ornstein-Zernlike form, (q + g ) ', for a
low final temperature. The difhculties become apparent
when one attempts to set up a direct low-temperature ex-
pansion. This appears at first rather straightforward:
After rescaling the fields y K '

y, one realizes that
all residual teinperature dependence (except that associ-
ated with the initial conditions) can be absorbed into
an efl'ective quartic coupling u'=u/K. Thus a low-
temperature expansion (large K) is an expansion in

powers of u'. But things are not quite so simple for
quenches into an unstable region since the system will

try to grow a Bragg peak. The structure factor will

eventually have a peak which has weight m = —r/u'
which, for small u', is large. Thus one must treat the

peak contribution to the structure factor as O(l/u').
This is reminiscent of equilibrium expansions in the or-
dered state where one must treat the average magnetiza-
tion as O(1/tu) and m =O(1/u). It is not difficult to
structure the calculation so that one can take this com-
plication into account. The O(1) calculation is then for-
mally identical to Eq. (2.31) for C(q, t) in MZ, except
that one replaces u 3u in Eq. (2.28) (MZ). This
theory, when applied for N=1, has two defects which
are associated with the improper final state reached by
the structure factor. The first defect, the existence of
spurious NG modes, is discussed above: The second is
that it gives the incorrect value for the final spontaneous
magnetization ( —r/3u) '~ rather than the correct value
( —r/u) '~ . These defects indicate an improper expan-
sion in this case. One of the problems is that the field
contains a portion associated only with local ordering.
We write y;(r) =p, (t)+p;(t), where p, (t) describes the
local ordering (domains) and p;(t) describes fluctuations
about the local ordering. For low temperatures and long
times p;(t) can be treated as small compared with

p, (r). The field p, (t) is written in the form po(r)
=[So(t)]'~ a;(r), where a; (t) =1 and So(t) is to be
determined. The dificult part of the analysis is to define

p, (r) and p;(r) such that p, (t) gives the Bragg-peak
component of the structure factor, without the oAending

q tail, and such that p; (r) represents the [small
=O(kaT)] equilibrating thermal fluctuation contribu-
tion to the structure factor. The key is to introduce a
fictitious probability distribution governing the cr; (r)
which facilitates the decoupling of p and p. The
strength of the ordering component, So(i), is determined
self-consistently by the requirement of So(t) =([p, (r)] )
evaluated at lowest order in kaT. So So(r) is the weight
under the Bragg peak at time t. The resulting lowest-
order equation for the peak contribution, C~(q, r)
=(~po(q, t)

~
), is identical to that found by MZ [Eq.

(2.31) of Ref. 15] with one important exception: The
NG modes are subtracted off so C~(q, r) =D(q, t), which
is given by MZ [Eq. (3.10) of Ref. 15]. The numerical
solution for C~(q, t) is, therefore, the same as in MZ.
For our purposes here the important result is that in the
low-temperature limit n =

4 (for both d=2 and d=3).
This is the same result that we have obtained using the
numerical method.
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