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Spin-Polarized Deuterium in Magnetic Traps
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We have calculated the spin-exchange two-body rate constants associated with the population dynam-
ics of the hyperfine levels of atomic deuterium as a function of magnetic field in the Boltzmann zero-
temperature limit. Results indicate that a gas of low-field-seeking deuterium atoms trapped in a static
magnetic field minimum decays rapidly into an ultrastable gas of doubly spin-polarized deuterium. We
also discuss the temperature dependence of various efI'ects.

PACS numbers: 67.65.+z, 76.90.+d

The interesting physics of the gaseous spin-polarized
quantum systems has been primarily studied for the Bose
system spin-polarized hydrogen and the Fermi system
spin-polarized He. ' Although the extreme quantum na-
ture of these spin-polarized systems has been established
in a variety of experiments, the observation of degenerate
quantum behavior so far has been out of reach of the ex-
perimentalists. For spin-down polarized hydrogen (H))
it was established that the critical density for Bose-
Einstein condensation (BEC) can only be approached up
to a factor 10 because of the presence of a third-order
recombination process which is dominant on the surfaces
of the helium-covered sample cells. Also for gaseous
3He the degeneracy regime (T((TF, where TF is the
Fermi temperature) is far out of reach of experiments as
a result of the relatively strong interaction eA'ects which
lead to the formation of the liquid state. '

Spin-polarized deuterium (DJ ) has attracted relative-
ly little attention of the experimentalists as this gas was
found to be much less stable than hydrogen. Never-
theless, the theoretical interest in this system is consider-
able. To establish the nature of the ground state of DJ
is a subtle problem which stimulated the use of the ad-
vanced methods of Fermi-Auid theory. It is predicted
that the doubly polarized state (Df t ) should be gase-
ous down to T=O K. Also the Landau parameters have
been calculated, and extensive theoretical eAort was
used in the calculation of the transport properties of
gaseous DJ as a function of temperature.

Recently, surface-free confinement schemes were pro-
posed which off'er new prospects to observe BEC by
studying spin-up polarized hydrogen (Ht) in magnetic
traps similar to those used for confining laser-cooled
spin-polarized alkalis. In this Letter we show that
Dt 0 is especially suited for confinement in a mini-
mum-8-field trap and may well prove to be the purest
experimental realization of the nearly ideal degenerate
Fermi gas in which to a large extent density and temper-
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FIG. l. Energies of the deuterium hyperfine states as a
function of magnetic field.

ature can be controlled independently. As such it is a
most interesting model system, allowing comparison with
ab initio theoretical results of any desired precision.
This is in contrast to dense, strongly interacting Fermi
systems such as nuclear matter, liquid He, and electron
gases in metals.

We discuss the stability of D t, a mixture of the
hyperfine states 8, e, and g (Fig. 1), confined in a static
minimum-B- field trap. We calculate both spin-
exchange and dipolar two-body rate constants in the
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levels is described by

np = —(G«~~+ Gp~ pr)nqn~ (G—r„p, +Gp, p, +PGp, p, +Gp, g, )n~n„

n, = —G~, t,n, n~
—(Gt~ q, +PGp, q, + Gp, q, + Gp, p, )npn, + (1 —P)G„q~nqn~,

Ilg = PGr~ g&B&llg (G~~ pg+PGpg pg)nant+ (1 P)Gg& pzllpfl&.

In general, a decay described by these equations yields a
stable state consisting of one single hyperfine component.
Which hyperfine state will survive depends on the rela-
tive magnitudes of the various decay rates, as well as on
the escape probability P and on the ratios between the
initial populations. Substituting the above calculated re-
laxation rates, we find a preferential decay of 6' and e
atoms. Hence, equal initial populations will lead to a
trapped gas of g atoms ("doubly spin-polarized" deuteri-
um). The fraction of j atoms which survive the spin-
exchange decay process when starting with equal initial
populations decreases with increasing P: At 8=0.1 T,
we find that 88% of the initial number of g atoms survive
for P=O, while for P=1, this figure is 12%.

The trapped g-atom gas will be ultralong lived as, in

the zero-temperature limit, two-body collisions can be
ruled out because of the Pauli principle. For nonzero

temperatures, two-body electronic dipolar relaxation is
dominant. Using plane-wave Born expressions ' we
estimate the corresponding cross section to be cr„~= (F/
E') '~2x 10 22 m~, with F (E') the kinetic energy in the
initial (final) spin channel. For low collision energies, E'
tends to a constant yielding the dipolar relaxation rate at
low temperatures to be proportional to temperature. For
8=0. 1 T, we estimate Gd;~/T=10 ' cm s ' K
(T ~ 0.05 K). Notice that this energy dependence favors
relaxation of fast atoms leading to a self-cooling contri-
bution associated with relaxation which is absent in the
hydrogen case.

Interestingly enough, though the thermalization rate
also vanishes in the low-temperature limit, we found that
the system still achieves thermal equilibrium on a time
scale substantially smaller than the dipolar lifetime of
Dt 0. Thermalization of the trapped j gas may occur
through elastic triplet potential scattering or via elastic
dipolar collisions. At low temperatures (T~0.03 K) di-

polar thermalizing collisions dominate because the
short-ranged triplet potential becomes ineffective as a re-
sult of the Pauli principle. Again, using plane-wave
Born expressions, ' we estimate the dipolar collision
cross section to be ath d;p 10 m . At higher collision
energies, where the Pauli principle becomes less effective,
gas-phase thermalization takes place predominantly
through elastic scattering via the strong short-ranged
triplet potential. A phase-shift analysis yields the corre-
sponding cross section to be proportional to the energy
squared: cr, h „;~/E =10 ' m K . For density n =10'
cm and temperature equal to the corresponding Fermi
temperature TF=39 pK, the above expressions yield a
lifetime due to dipolar relaxation of several hours and a

gas-phase thermalization time of several seconds. Under
similar conditions the lifetime of H t 4 is some
seconds. ' In contrast to the case of Ht 4 where in the
limit T 0 the ratio of the thermalization rate to the re-
laxation rate vanishes, in the case of Dt f- this ratio in-

creases as 1/JT. This shows the possibility to use evap-
orative cooling as an eScient means for cooling the
trapped gas down to the degeneracy regime.

In the foregoing, degeneracy efIects were left out of
consideration. An accurate description of such efI'ects
depends in a subtle manner on the evaporation scheme
and requires a detailed analysis. In a naive picture, the
Fermi pressure limits the density for decreasing tempera-
tures, in contrast to the hydrogen case where higher den-
sities are favored, ultimately leading to BEC. In con-
trast to relaxation, the thermalization rate is affected by
blocking eA'ects in the final state. Still, the evaporative
cooling scheme may be expected to be very efficient if we
take into account that, for low temperatures, the dif-
ferences in occupation of the single-particle levels, com-
pared with the T =0 state, are concentrated at the
highest energy levels near the Fermi energy. Cooper
pairing in D t 0 is way out of reach as only p-wave pair-
ing is possible, ' requiring extremely high densities.

Resonance recombination ' and resonance-enhanced
relaxation, which are probably the dominant decay
mechanisms in magnetically trapped alkalis, are not ex-
pected to disturb the above described decay of Dt. The
(i =21, j=0) and the (v =21, j=1) molecular levels
are just bound, so that resonance recombination can play
a role in the decay of Df. In Dt, however, recombina-
tion via these levels is inefficient thanks to the positive
sign of the Zeeman energies for the low-field-seeking
states. Unbound singlet states also play a negligible role
at temperatures of interest as the lowest resonant state
(v =20, j=6) is calculated to be 10 K above threshold.
Also the slow decay of D t f- is not disturbed by
resonance-enhanced processes as collisions proceed via
the triplet potential which does not support (almost)
bound states.

In the foregoing we discussed the behavior of the
trapped gas in some detail, but we did not treat the prob-
lem of the loading of the trap and only mentioned some
facts relevant to the cooling of the trapped gas. As in
the hydrogen case, the development of an efTicient filling
and cooling scheme is a major project which is left as a
challenge to experimentalists.
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