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First-Order Phase Transition in Compact Lattice QED with Light Fermions
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We present a numerical study of lattice (compact) QED with dynamical fermions using hybrid sto-
chastic differential equations. Working with an 8* lattice and fermions of mass 0.10 (lattice units), we
have found an unexpected first-order transition separating the strong- and weak-coupling regions.

PACS numbers: 11.15.Ha, 12.20.Ds

Many years ago Gell-Mann and Low' and Landau?

remarked that in spite of its success, weak-coupling QED
is a logically incomplete theory. The reason is that zero
coupling is an infrared-stable fixed point rather than an
ultraviolet-stable fixed point as in QCD. This means
that the running coupling constant of QED increases
with the cutoff (A) making the weak-coupling expansion
inconsistent at very short distances or high energies. In
addition, Landau? also gave arguments suggesting that
the renormalized coupling constant may vanish when A
goes to infinity (the *“‘zero-charge” situation).

A resolution to these problems could be the existence
of a nontrivial zero of the theory’s B function at a
nonzero coupling.® The search for this new fixed point
of QED must necessarily involve nonperturbative tech-
niques.

A nonperturbative study of QED is not expected to
improve the physical results obtained from weak-
coupling “phenomenological” QED because at high en-
ergies where perturbation theory is expected to fail other
interactions will be important.? However, from the point
of view of QED as an abstract field theory, it is clear
that the search for a nontrivial zero of the g function is
an interesting challenge.

There have been basically two approaches to the prob-
lem: (1) a study of the Schwinger-Dyson equation in the
ladder approximation®® and (2) the lattice technique.

With use of the first technique, a new ultraviolet fixed
point of the B function was found. The new strong-
coupling phase generates fermion masses dynamically.
A nontrivial continuum theory can be recovered by vary-
ing the coupling constant (@ =e?%/4r) as a function of
the cutoff. In Refs. 4 and 5, it has been shown that the
expected scaling law should be

m=Cexpl—r/(ala. —1)"?], (1)

where a, is the critical coupling and C is an unknown
constant.

The lattice formulation of QED allows nonperturba-
tive calculations in a more systematic way. In the pure
gauge case compact QED has a rich structure that has
been analyzed by numerical and renormalization-group
techniques.® In this limit (heavy fermions) a phase tran-

sition separates a strong-coupling regime where there is
confinement, as in QCD, from a massless phase in weak
coupling. When dynamical fermions are included, the
numerical calculations are more difficult. In a quenched
approximation’ to the noncompact version of lattice
QED, it was shown that the lattice approach gives results
in qualitative agreement with Refs. 4 and 5. On sym-
metric 84 and 10* lattices, a phase transition was found
with (yy) vanishing (nonvanishing) on its weak-
(strong) coupling side. For f=1/e? below the critical
point B, (¥y) behaved as (8, —B)*60F010 45 expected
from mean-field theory. However, studies on asym-
metric lattices, 2% 83, 4x 83, and 6x83, revealed that the
critical coupling was independent of the lattice asym-
metry (temperature). Thus, no evidence was found for a
transition temperature which scales with Eq. (1). This
result could be a limitation of the quenched approxima-
tion and the trivial (free-field) nature of pure noncom-
pact Abelian gauge fields. It might, however, support
the “collapse” picture of the chiral condensate, i.e., the
size of the condensate wave function is O(A ~!), and the
critical temperature is O(A) and thus independent of B.
Miransky, in particular, has proposed that chiral symme-
try breaking in nonasymptotically free theories is analo-
gous to the collapse of the single-particle electron wave
function bound to a point charge Z>Z ~137. He
stressed that through nonperturbative renormalization
QED would possess a nontrivial continuum limit at criti-
cality. See Ref. 4 for further details. These arguments
deserve clarification and they motivated the present
study which puts light fermions into the compact theory
to make the dynamics more interesting.

A study of this type was done earlier.® There it was
found that the two-phase structure of the quenched
theory survives the introduction of fermions. The
strong-coupling phase is characterized by spontaneous
breakdown of chiral symmetry. A phase transition
occurs with a critical coupling of order 1, and at weak
coupling the vacuum is chirally symmetric. These re-
sults were obtained with relatively large fermion bare
masses (m =0.25 and 0.20 in lattice units) and with lim-
ited statistics. In Ref. 8 it was noticed that the relaxa-
tion time to achieve equilibrium starting with hot and
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cold configurations was rather high in the vicinity of the transition.

In this Letter we present a high-statistics study of lattice compact QED with light staggered fermions. We worked
on an 8% lattice with fermion bare masses m =0.10 and 0.25. The main result of the Letter is that contrary to the naive
expectations described above, a first-order transition appears to 1 =0.10, introducing problems in the study of the con-
tinuum limit of compact lattice QED with massless fermions when the standard Wilson action is used for the gauge-

field sector.
The action is given by

S=pY ReU,+ %ZX‘“nﬂ(x)ﬂ/’(x)[U,,(x)w(x +u) —UF x—wyx =l +mY gx)y(x), (2)

where x, p, and u, denote sites, plaquettes and directions of a four-dimensional hybercubic lattice. The U(1) link
gauge variable is denoted by U,(x) while the fermionic fields on the sites are @,y (staggered fermions). The rest of the

notation is standard.

To numerically generate configurations with probability exp(—S) we use the hybrid method.® This is a stochastic
differential equation method in which molecular-dynamics equations are iterated, but the velocities are refreshed
periodically (i.e., from time to time the Langevin equation is used). The molecular-dynamics equations are the follow-

ing:

=330 +Y, SIATWIAW)] 6, — 0’ 0¥ 0 — BY ReU,, (3)

where U,(x) =exp(i®)u™, A(U) is the lattice Dirac
operator, ¢ are “‘pseudofermion” fields, and w? is a con-
stant. For details see Ref. 9.

Every 25 iterations we refresh the velocities putting
the system in contact with a heat bath at coupling 8. To
avoid systematic errors and instabilities in the algorithm,
we use a small value of the time step d¢r=0.01 for
m =0.10, and dtr=0.02 for m=0.25. To analyze the
phase diagram of the theory, we measure the chiral con-
densate and the mean value of the pure-gauge field term
Sy in the action of Eq. (2).

In Fig. 1 we show (yy) as a function of B for masses
m =0.25 and 0.10. We see an abrupt change of behavior
in a narrow interval suggesting the possibility of a
discontinuity in this observable. The algorithm was
iterated 10000-50000 times at each point.

The critical couplings are B, =0.894 for m =0.10, and
B.=0.919 for m =0.25. This represents a shift of about
10% with respect to the pure gauge results where the
critical B is near® 1.0. We also did a mean-field study of
lattice QED with fermions (for details see Ref. 8). In
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FIG. 1. (¥ vs B with masses 0.10 and 0.25.
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this case, the shift in the critical 8 between the pure
gauge theory and the theory with zero-mass fermions is
approximately 7% in good agreement with the numerical
result.

To clarify whether we are observing a first- or higher-
order transition, we show in Fig. 2(a) the results of the
computer time evolution of the gauge-field term in the
action, Sy, at m =0.25. We needed over 40000 itera-
tions of the algorithm with a time step of dr =0.02 to
find convergence of the two signals, a disordered start
and an ordered one, showing the existence of only
quasimetastability at this value of the mass. In Fig.
2(b), we show {wy) as a quasimetastability at this value
of the mass. In Fig. 2(b), we show (yy? as a function of
iteration number. These results are in good agreement
with the conclusions of Ref. 8 at this value of the mass.

However, by reduction of the mass, the order of the
transition apparently changes. In Fig. 3(a), the results
for m =0.10 are presented. Now after 100000 iterations
(dt =0.01) the two-state signal survives suggesting the
existence of a first-order transition. Comparison of the
mass =0.25 and 0.10 runs suggests that as mass ap-
proaches zero, a clean signal for metastability will be
produced. Further simulations at # =0.050 are in pro-
gress to confirm this point.

In Fig. 3(b), we plot {yy) versus computer time. Al-
though the signal is quite noisy, the existence of two
states is still fairly compelling.

In conclusion, the phase diagram of lattice compact
QED with the Wilson gauge action and staggered fer-
mions resembles Fig. 4. In the pure gauge case, there is
a weak first-order transition'® that presumably disap-
pears very quickly when the dynamical fermions are
turned on. For intermediate values of the mass, the tran-
sition is replaced by a smooth crossover phenomenon,
while for very small masses it is again of first order.

What about the influence of finite-size effects (or finite
temperature) on the transition? Simulations on 6% and
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FIG. 2. (a) Mean value of the action So as a function of
computer time at m =0.25 and $=0.919. (b) (yy) vs comput-
er time with the same parameters as in (a).

10 lattices at m =0.10 are in progress, and results on
the 6* lattice strongly suggest that the transition is a
zero temperature, bulk phenomenon since 3., as mea-
sured on the 6* lattice, is shifted only slightly (0.025
units toward stronger coupling) relative to the 8% data
shown here. On the 6* lattice {(yy) jumps from
0.338x0.011 at pB=0.8675, to 0.144*£0.005 at
B=0.875, and Sy jumps from 0.484=+0.001 to
0.381 = 0.002.

It is clear that the existence of a first-order transition
for lattice QED with light fermions is an undesirable
result— the theory does not have an interesting continu-
um limit. Other approaches that will be used in the fu-
ture to search for a physically interesting strong-coupling
phase of QED are (1) the noncompact formulation and
(2) the introduction of additional parameters in the com-
pact formulation.!' This later method has proved able to
change the order of the transition in the pure gauge
case.'? Of course, we would like to develop an intuitive
physical picture of the existence of this first-order transi-
tion. Perhaps the number /N, of continuum flavors is im-
portant here as in QCD at high temperature. We have
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FIG. 3. (a) Mean value of the action S¢ as a function of
computer time at m =0.10 and =0.894. (b) Same as (a) but

plotting (wy).

run simulations on 64 lattices with Ny=1, 4, and 16, and
have found very clear metastability in each case. In ad-
dition, it would be interesting to understand the interplay

/

B
FIG. 4. Probable phase diagram of QEDs+, in the plane

(m,p).
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of the dynamical vortices'3 which drive the transition in
the pure gauge theory and the massless fermions. Since
the size of the condensate wave function is presumably
O(A 1), it could couple strongly to the cores of the ul-
traviolet singular vortex loops of the pure U(1) gauge
model. Since the noncompact formulation of lattice
QED does not have vortices, it may be that the chiral
transition is continuous here even in the unquenched
theory. Preliminary simulations do not rule out this pos-
sibility. If this is true, we must then understand the limi-
tations of Landau’s zero-charge scenario and the fate of
fermion vacuum polarization at criticality.

In future studies we shall implement Fourier accelera-
tion techniques to evade long correlation times in the
computer simulations. !4
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