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The temperature of the structural phase transition in GeTe is calculated completely ab initio from a
model lattice-dynamical Hamiltonian that is constructed from microscopic quantum-mechanical total-
energy calculations. The phase transition in the model system is studied through a renormalization-
group-theory approach, leading to the prediction of a fluctuation-driven first-order transition at

657+ 100 K.

PACS numbers: 64.70.Kb, 63.75.+z, 71.45.Nt

In the application of modern concepts of critical phe-
nomena to the study of finite-temperature phase transi-
tions in real materials, the calculation of the transition
temperature and other nonuniversal critical properties is
essential. This requires the combination of detailed mi-
croscopic quantitative knowledge of the properties of the
material under consideration with an appropriate statis-
tical-mechanical treatment.

One way to obtain these properties is through first-
principles total-energy calculations. Previous attempts to
calculate transition temperatures’? have used total-
energy methods which rely on approximations limiting
their accuracy and range of applicability. In contrast,
the ab initio pseudopotential method has been seen to be
highly accurate in describing the zero-temperature
structural properties of a wide variety of systems,? in-
cluding group-IV tellurides.* In the present study of the
structural phase transition of bulk GeTe, we combine
this self-consistent method with a renormalization-
group-theory approach to calculate 7. and predict other
critical phenomena associated with the transition, in ex-
cellent agreement with available experimental data.

At high temperatures, the IV-VI narrow-gap semicon-
ductor GeTe has the rock-salt structure. At low temper-
atures, the system exists in a rhombohedral structure.
This structure, shown in Fig. 1, can be described as a
rock-salt structure slightly distorted by the freezing in of
a k=0 optic phonon along the [111] direction, corre-
sponding to the order parameter of the transition, with a
subsequent shear relaxation along [111]. For various
reasons, experimental studies of the transition and their
interpretation are somewhat difficult. Observed transi-
tion temperatures range from 625 to 700 K.>~7 In some
measurements,’ small discontinuities in volume and «a
have been detected at the transition, suggesting that it
may be weakly first order.

Our theoretical investigation of this transition
proceeds in three steps: (1) manipulation of the full
anharmonic lattice Hamiltonian into a form with a tract-
able number of coupling constants (fifteen) to be deter-
mined by (2) pseudopotential total-energy calculations
for various structural configurations, and finally (3) a
renormalization-group calculation implemented in

momentum space to obtain 7, and the critical properties
associated with the transition.

For the description of a displacive transition® such as
that in GeTe, an anharmonic lattice Hamiltonian is ap-
propriate.*!® The local-mode approximation'' provides
an intuitively appealing way of obtaining an equivalent
model Hamiltonian with a greatly reduced number of
parameters. For each unit cell, the local-mode variable
is defined as the projection of the ionic displacements
onto the polarization vectors of the k =0 optic modes, re-
ferred to the mean positions in the high-temperature
structure. The Hamiltonian is expanded in symmetry-
allowed powers of the local-mode variables, with on-site
terms kept up to some arbitrary order and intersite in-
teractions to quadratic order only.

The approximation of purely local anharmonicity,
essential for the obtainment of a Hamiltonian with a
small number of parameters, necessitates that the precise
choice of local mode incorporate a physical understand-
ing of the lattice instability. The charge flow and energy

-gain that result from the symmetry breaking by the dis-

tortion of the six equivalent nearest-neighbor bonds of
the rock-salt structure involves primarily Te p-like
states,*!? while the main anharmonic contribution to the
energy originates in the nonlinear Te polarizability.'?
Thus for GeTe the best choice of local mode emphasizes
the distortion of the Te-ion environment:
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FIG. 1. The low-temperature rhombohedral structure of
GeTe as a two-step distortion of the rock-salt structure.
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unit cell and the displacements Ar are measured relative to the rock-salt structure.

The local-mode variables sit on the sites of an fcc lattice and only cubic-symmetry invariants appear in the expansion
of the Hamiltonian. We truncate the on-site potential at fourth order but keep isotropic terms to eighth order. Inter-
site interactions up to second order are included since the constraints imposed by the sharing of Ge atoms by first- and
second-neighbor local-mode octahedra suggest that the coupling is important.

The general expression for the on-site potential is
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where £(R;) is the local-mode variable at the fcc lattice site R;.

We also include in the Hamiltonian the lowest-order terms which describe strain deformations and their coupling to
the order parameter. With the strain tensor e,s= 3 (Sup/8x,+ Sua/8xp), the expression valid for long-wavelength
strain fields is
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The values of the coefficients for GeTe are obtained by l

the fit of the model Hamiltonian to the energies of a ionic configurations. To a good approximation,'? it can
variety of local-mode configurations. For the zero-strain be taken as the minimum over the corresponding ionic
coefficients A, ug, vo, D, E, a,, a», a3, and b,+2b,, we configurations with the same translational and point
must consider configurations with the full fcc transla- symmetries as the local-mode configuration. The perfor-
tional symmetry as well as configurations with two mance of this procedure for all the local-mode con-
translationally inequivalent types of local-mode variables figurations, which in each case involves at most a one-
on fcc lattice sites. In each type of unit cell, we study dimensional minimization, results in the energies shown
two families of local-mode configurations, specified by a in Fig. 2. The model Hamiltonian parameters obtained
fixed polarization vector at each inequivalent site and a from fitting of these energies are given in Table 1.
varying amplitude z. For each family, the energy as a Given this microscopic Hamiltonian, the transition
function of 7 determines one combination of coefficients temperature and critical properties follow from the eval-
at each order. uation of the partition function. A systematic approach
To obtain the strain coefficients Cy,, Ci2, Cas, g0, &1, begins with a Hubbard-Stratonovich transformation on
and g,, it is sufficient to consider configurations in which the partition function to introduce a dynamical mean
the local mode is uniform and only the lattice changes. field ¢; which couples linearly to the order parameter.
We study three types of variations corresponding to pure The trace over &; is expanded in ¢; and e to give a func-
volume change, pure rhombohedral-angle change at fixed tional of the same form as the original Hamiltonian,
volume, and uniaxial strain e,,. where the coefficients are now combinations of single-site
The calculations of the energies of local-mode con- traces.
figurations are performed'# with use of scalar relativistic The evaluation of the resulting functional integral
pseudopotentials, a plane-wave basis with cutoff E, within mean-field theory leads to a T, of 673 K. An esti-
=10.5 Ry and Lowdin perturbation up to £,=16.5 Ry, mate of the correction to this value and information
and special k-point sets with up to 343 points in the full about the critical behavior can be obtained through the
Brillouin zone for fcc, 100 for tetragonal, and 125 for renormalization group in the ¢ expansion. This type of
rhombohedral. Convergence tests show that with these compressible three-component model with cubic aniso-
cutoffs, energy curvatures are determined to about 10% tropy has been studied previously.'> For the present dis-
accuracy. cussion we write the functional in the standard Landau-
In principle, the local-mode configuration energy is ob- Ginzburg-Wilson form with n=3, d=3, and cubic sym-
tained from an integral over the corresponding space of metry, including the infinite-range intersite quartic cou-
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FIG. 2. Calculated local-mode configuration energies, given relative to the rock-salt structure minimum in meV per atom. Solid
lines show fit with use of the model Hamiltonian parameters given in Table I. On the left, the energies for six families of local-mode
configurations with zero strain are shown— longitudinal and transverse: (a),(b) fcc; (c),(d) tetragonal; (e),(f) rhombohedral. On

the right, the energies of configurations which include strain:

(g),G),(k) pure strain distortions, (h),(j),(k) E(e, 7=0.01)

— E(e, 7=0.00) which determines the order-parameter—strain coupling.

plings generated by integrating out the homogeneous strain. This leads to
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In analyzing this model, we neglect the higher-order
anharmonicities and the anisotropic components of the
gradient terms, since these are marginal or irrelevant
fields and will modify the flows significantly only in ex-
treme cases. Thus we consider the momentum-space

TABLE I. Model Hamiltonian parameters for GeTe (elec-
tronvolts per local mode).

On site Intersite Elastic Coupling
A 593 a 6.08 Cun 297 go 167
u 8.73x10?3 a 10.5 Cp2 0.12 g 420
v 4.12x103 as 438 Cas 575 g2 134
D -—17.32x10° b +2b2 420

E 2.36x107

> (8p¢,) (3,0p) } ]

a*f

Y 0.0 205" ) 24w, 3 ¢a(r)¢ﬂ(r)¢a(r')¢p(r’)].

a<p a<p

renormalization-group differential recursion relations to
first order in ¢ =4 —d in the six-dimensional parameter
space r=ro(T — T, mf), u, v, wo, wi, and w,. By iterat-
ing the recursion relations numerically, we can examine
the changes in the flows as the system moves along the
line in parameter space according to the physical tem-
perature 7, and find a shift in 7. of —16 K, yielding
T.=657 K.

This renormalization-group analysis can also be used
to understand the observed first-order character of the
transition. At the fixed points of the pure cubic-
anisotropy model (w; =0), the w; are relevant. There
are new fixed points with w;* > 0, but these are not ac-
cessible to flows starting in the w; <O region of parame-
ter space. The resulting runaway behavior of the strain-
generated couplings is associated in principle with the



VOLUME 59, NUMBER 5

PHYSICAL REVIEW LETTERS

3 AUGUST 1987

occurrence of a first-order transition. To see that this
provides a plausible mechanism for the observed charac-
ter of the transition, consider that within mean-field
theory, the effect of the strain coupling is to shift the
effective values of (u,v) towards the mean-field phase
boundary ueg+ves/3 =0, from (u,0) =(0.018,0.013) to
(u,0) =(—6.1x107%0.028). This substantial shift
suggests that though the transition within mean-field
theory is still second order, the strain effects could be
large enough to produce an observable discontinuity
within the renormalization group, and thus the transition
is fluctuation-driven first order.

In summary, we have studied the phase transition of
GeTe completely ab initio, predicting T, =657 = 100 K.
This compares quite favorably with experimental values.
In addition, we find that the presence of the order-
parameter strain coupling moves the system into the
fluctuation-driven first-order region of the phase dia-
gram, consistent with experimental indications of a
discontinuous transition. This provides an encouraging
prospect for future applications of the pseudopotential
total-energy method to the calculation of finite-temper-
ature properties of solids.
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