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The dynamics and energy flow in Au plasmas produced by a 0.35-um laser have been studied with lay-
ered targets with 6- and 24-beam spherical illumination from the Omega laser, to understand the pro-
cesses leading to subkiloelectronvolt x-ray emission. A significant enhancement in x-ray conversion at
low intensities is observed for the 24-beam irradiations with higher energy, greater uniformity, and
larger targets. Results are interpreted by comparison with hydrodynamics-code calculations. The depth
of energy penetration and x-ray emission in the plasma appears to be well understood, but some details

of the x-ray time signature and spectra are not.

PACS numbers: 52.40.Nk, 32.30.Rj, 52.25.Nr, 52.50.Jm

The efficiency with which energy absorbed in laser-
produced high-Z plasmas is converted to soft x rays in-
creases markedly at shorter laser wavelengths.!= This
results from laser-light deposition at higher plasma den-
sities, yielding cooler plasmas with lower hydrodynamic
losses, and can be important for some approaches to
inertial-confinement fusion.* A similar increase in con-
version efficiency is expected at lower laser intensities.
However, early experiments with planar Au targets'?
showed a decrease of x-ray emission at low intensities,
whereas the LASNEX® simulations code predicted an in-
crease,” indicating that high-Z plasmas were not well
understood. Thus we have sought more specific observa-
tions of the hydrodynamic, energy-transport, and atomic
processes which affect x-ray emission.

Here, we report the first measurements of x-ray con-
version performed in spherical geometry. This pseudo
one-dimensional experiment simplifies integration of
measurements over solid angle and allows a test of
whether two-dimensionality inherent in previous planar
experiments might have affected the results.®” Also, we
examine the dynamics of high-Z plasmas and the pro-
cesses which affect x-ray emission, including the material
depths associated with energy transport and x-ray gen-
eration, and the time dependence and spectra of the x-
ray emission, at intensities of 4x 1012 to 4x 10" W/cm?2
Finally, we compare similar experiments using two
different laser-energy-target-size combinations at the
4x10"3 and 4x10'* W/cm? intensities.

We have investigated some of the changes in plasma
conditions which are expected as the A, =0.35 um irra-
diance is decreased from 4x10' to 4x10'3 W/cm?
(where the emission discrepancy was first noted?). At
4x10' W/cm?, radiation cooling is weaker than laser
deposition in the underdense plasma. Hence the corona

temperature rises, reducing the inverse-bremsstrahlung
absorption opacity, so that the laser penetrates to the
critical surface and deposits its energy locally. This pro-
duces strong steepening of the density and temperature
profiles near the critical density. The x-ray emission
originates in a localized region near and above the criti-
cal density, with electron transport carrying energy from
the absorption region to the emitting region. At 4x10'3
W/cm?, radiation cools the corona at a rate nearly equal
to the laser deposition, so that the deposition and the x-
ray emission occur in an extended plasma well below the
critical density. Electron transport is relatively unimpor-
tant in this case.

Specific predictions of the features of the x-
ray-emission region are shown in Table I. The one-
dimensional (1D) LASNEX> modeling used for this work

TABLE I. Calculated (f,=0.08, A, =0.35, 7, =650 ps)
characteristics of the subkiloelectronvolt x-ray emission and
burnthrough features for layered Au-on-(CH), spheres.

4x108 W/cm? 4x10' W/cm?

X-ray emission

Radial extent (um) 40 8
Density (0.04-0.5)n, (0.3-1.8)n,
Electron temperature (keV) 0.1-0.5 0.3-1.2
Average Z 25-30 35-45
Erad/Eabs 0.85 0.72
EM lines/Erad (%) <l 5
Burnthrough features
Laser penetration depth 350 750

(at peak of pulse) (A)
X-ray-emission decrease
(at burnthrough)

Negligible Significant
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includes inverse bremsstrahlung laser deposition, La-
grangean hydrodynamics, thermal electron diffusion with
flux limit of f,=0.03 (as in previous work?) or 0.08
(best fit for this and related low-Z spherical’ work), and
multigroup flux-limited x-ray diffusion. The modeling
includes non-local-thermodynamic-equilibrium atomic
and radiation physics, with a time-dependent solution of
the average-atom hydrogenic collisional and radiative
rate equations, neglecting subshell energy splittings and
transitions. It closely corresponds with that used previ-
ously,?"® except for the omission of suprathermal elec-
trons. Related 2D calculations including ray-trace mod-
eling of the laser beams (we use tangential force but
with axisymmetry) gave nearly identical results.

With use of layered Au-on-(CH), targets, the pene-
tration of energy through the Au into the (CH),
(burnthrough) can be observed by detection of changes
in the emission when (CH), replaces Au in the x-
ray-emitting plasma, since the low-Z (CH), is a poor
emitter. The Au thickness penetrated by the laser de-
creases as the intensity decreases (Table I). Further-
more, the effect of burnthrough on emission varies with
intensity. At 4x10'" W/cm* an abrupt reduction in
low-energy x-ray flux is expected when the laser burns
through the Au layer, since the emission source is quite
localized. At 4x10!3 W/cm?2, x-ray emission should per-
sist after laser burnthrough, since it originates in a broad
region of the corona. For both intensities, the time-
integrated x-ray emission decreases as the Au layer be-
comes thin enough to replace gold by (CH), in the x-
ray-emitting region during the laser pulse.

Experiments to study these phenomena were per-
formed with use of the 0.35-um OMEGA multibeam
laser facility.® The laser initially provided 250~300 J in
six beams, and later 1600 J in all 24 beams, in a nominal
1, =650 ps FWHM pulse. To obtain good uniformity,
the beams were focused beyond the target so that the
beam edges were tangent to the initial surface. Illumina-
tion nonuniformities were =50% rms (with 2:1 large-
scale variations) for six-beam irradiations, but only
=20% rms for 24-beam experiments. Target and irradi-
ation configurations are summarized in Table II. Tar-
gets consisted of solid (CH), spheres coated with a layer
of gold. We used a series of targets with different Au
thicknesses (0.01-0.4 um) which bracketed the predict-
ed midpulse laser penetration depth, as well as thick-Au

TABLE II. Target and irradiation configurations.

Intensity Number of Energy Target D
(W/cm?) beams @) (um)
5x10'2 24 250 1650
4x10" 6,24 250,1800 600,1600
4x10' 6,24 250,1700 200,450
3x10'% 24 1600 140

targets (1.5-3 um), essentially equivalent to solid gold
spheres. Gold thicknesses were determined to be uni-
form to 10% (at all thicknesses) by scanning-electron-
microscope analysis.

Target behavior was observed with use of a large array
of diagnostics. The absorbed energy was measured to
about 10% accuracy with 20 plasma calorimeters. Mea-
sured absorptions were 85%-95%, 70%-80%, and 55%-
60% (calculations without refraction obtain 100%, 100%,
44%) at 4x10"'3 or below, 4x10'%, and 4x10'> W/cm?,
respectively. Absolute x-ray emission measurements
were obtained with a four-channel Al-photocathode x-
ray diode (XRD) spectrometer covering 0.1-2 keV with
300-ps time resolution.'® An x-ray transmission-
grating/streak-camera spectrograph provided time-
resolved (15 ps) spectra from 0.5 to 3 keV. For the 24-
beam experiments, a time-integrating transmission grat-
ing spectrograph provided 0.1-3-keV spectra with =2 A
resolution. X-ray microscopes imaged the plasma’s ki-
loelectronvolt emission. M- and N-line emission spec-
tra'!' were studied with time-integrated and time-
resolved!? crystal spectrographs. Gold M-line emission
(near 2.5 keV) was present above 10'* W/cm? and ab-
sent at lower intensities, as predicted. The hard-x-ray
bremsstrahlung (10-100 keV) was measured and im-
plied negligible levels of instability-produced superhot
electrons (< 10 7*E ja6er).

Soft-x-ray conversion efficiencies (hv <2 keV) were
inferred from least-squares fits to the XRD signals, with
use of the XRD response functions convolved with a
spectral shape obtained either from the time-integrated
grating-spectrograph measurements or from LASNEX cal-
culations. We found that the results are insensitive to
the differences between the measured and calculated
spectra for the relatively broad-band subkiloelectronvolt
responses used here: The conversion efficiencies obtained
with use of the two types of spectra agree to within 10%.
For the same reason, we estimate that Au M-line emis-
sion, which might spuriously increase the inferred x-ray
conversion efficiencies, had little effect.

The conversion efficiencies for thick gold layers are
shown in Fig. 1, together with LASNEX predictions as-
suming f, =0.08 (f, =0.03 is also shown, as used in the
analysis of previous experiments?). The six-beam data
exhibit no intensity dependence and agree well with the
previous 0.35-um plane-target data? (but disagree with
calculations). Thus, the planar results were apparently
not much affected by 2D effects. In contrast, the 24-
beam data show a significant intensity dependence and
good agreement with LASNEX calculations with use of
fe=0.08. Thus, for the 24-beam experiments, the
overall energy balance appears to be roughly as calculat-
ed. A single broad-band (0.15-2 keV) XRD channel
showed no intensity dependence in the six-beam series,
and distinct intensity dependence in the 24-beam series.
Thus, the difference between the two irradiation classes
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FIG. 1. X-ray conversion efficiencies inferred from spherical
targets.

is not an artifact of the analysis. This difference sug-
gests target-size or energy dependence (possibly due to
changes in plasma scale length or optical depth of the
emitting region) or perhaps dependence upon illumina-
tion uniformity.®’ Since the cause of these changes is
not well understood, continued study is needed. We note
that recent plane-target measurements at kilojoule ener-
gies!3 also show intensity dependence similar to our 24-
beam results.

Figure 2 shows the relative conversion efficiency versus
gold thickness for the 6- and 24-beam series, along with
calculations using f. =0.08. As discussed above, when
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FIG. 2. X-ray conversion efficiency, normalized to the
thick-Au values, as a function of gold-coating thickness.
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the Au-layer thickness is reduced enough, (CH), re-
places Au in the emission region during the laser pulse,
and the time-integrated x-ray emission decreases. The
rate of falloff depends upon both the rate of energy
penetration and the relative localization of the x-ray
emission. The general agreement in conversion efficiency
falloff between the calculations and the data indicates
that the energy penetration and x-ray-emission localiza-
tion are well modeled. In particular, the penetration
depth for both experimental series increases dramatically
with increasing intensity. However, it is interesting to
note that the more uniformly irradiated 24-beam targets
show somewhat less rapid emission rolloff and poorer
agreement with calculations, especially at 4x10'
W/cm? (see time-resolved measurements below). For
both series at 4x10'* W/cm? observations of CVI
Lyman-a emission for Au thicknesses of =750 A or less
confirm the penetration of energy into the (CH),.

The time history of emission from the 24-beam experi-
ment shows most of the burn-through features discussed
above. Figure 3 shows measured and calculated emission
pulses for thick and thin gold layers at 4x10'* W/cm?,
We observed an abrupt emission decrease in the N-line
region (near 800 eV) for thin targets, at the time pre-
dicted [Figs. 3(a) and 3(b)], indicating that the Au-layer
burnthrough occurs as expected, consistent with a nar-
row emission region. No such abrupt reduction in emis-
sion for thin Au layers was seen at lower intensities, con-
sistent with the expected broad emission region. We also
observed a reduction in the absolute peak emission power
for thin targets which agrees well with that calculated
[Figs. 3(c) and 3(d)]. However, our measurements indi-
cate that the magnitude of the emission decreases after
burnthrough [Figs. 3(b) and 3(d)] is less than that pre-
dicted, perhaps indicating relatively greater emission
from the underdense plasma than calculated. This ex-
cess late-time emission may be the cause of the slower
rolloff in the 24-beam burnthrough curves at 4x10'*
W/cm? (Fig. 2). We found that the burnthrough had
little effect on the M-line region of the spectrum, as ex-
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FIG. 3. X-ray emission pulses for thick and thin targets in
the spectral regions of the gold /V lines (=800 eV) for 4x10'*
W/cm? irradiations. Time resolution was =15 ps for streaked
data (a) and (b), and =300 ps for XRD data (c) and (d).
XRD data and calculations are shown with the same arbitrary
units.
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FIG. 4. X-ray spectra for Au-coated spheres (thickness as
indicated), calculated and measured, at 4x10'* W/cm?2. Verti-
cal scale is linear.

pected, since this emission is generated primarily in the
hot coronal plasma.

Grating spectrograph data for 24-beam irradiations
show spectral details differing significantly from the cal-
culations: The emission near 250 eV is considerably
stronger than calculated relative to the 400-800-eV
emission (Fig. 4). This again suggests that some details
of the emission processes are not correctly modeled.
However, the observed centroid of the N-band emission
shifts from about 400 eV at 4x10'2 W/cm? to about 800
eV at 4x10'> W/cm? as the mean charge state of the
emitting region increases, as expected for warmer plas-
mas, and in agreement with calculations.

Images of kilovolt x-ray emission show limb brighten-
ing which corresponds in radial extent and relative
brightness with calculations. The images also show
small-scale spatial modulation of the emission, particu-
larly for thin Au layers, which might be caused by
filamentation!* enhancing laser beam nonuniformities.
However, we find no evidence that this affects the
burnthrough or other plasma processes.

We find that the total soft-x-ray conversion effi-
ciencies in the small-target irradiations agree with previ-
ous planar experiments and are intensity independent.
The large-target results are intensity-dependent and in
overall agreement with LASNEX calculations using near-
classical thermal electron transport. Measurements of
conversion efficiency and time dependence of emission
for thin Au layers, and corroborating observations, indi-
cate that the plasma flow and the energy-penetration and
x-ray-emission depths are generally well understood.
However, the emission spectra and certain details of the
burnthrough time signatures are not reproduced by the
calculations. Furthermore, the apparent dependence of
x-ray emission upon target size, energy, or illumination
uniformity is also not reproduced. Since the hydro-
dynamics and gross spatial aspects of the subkiloelec-
tronvolt emission region are well calculated, it appears
likely that these discrepancies originate in the atomic- or

radiation-physics modeling. The approximations of the
current non-local-thermodynamic-equilibrium atomic-
physics model, including average-atom hydrogenic ener-
gy levels and rates, and neglect of subshell splitting, need
to be examined further.
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