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Squeezing of Spontaneous Emission in a Laser
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It is predicted that a laser's phase-diffusion rate (its Schawlow-Townes linewidth) may be reduced by
as much as one-half when the laser is coupled out to "squeezed vacuum" as opposed to ordinary vacuum.
The eftect is important because it is directly related to spontaneous emission in a squeezed vacuum. It
shows that a part of spontaneous emission is due to amplified zero-point noise and that, therefore, in a
squeezed field the random phases of the spontaneously emitted photons are no longer uniformly distri-
buted.

PACS numbers: 42.50.Kb, 42.50.Dv, 42.55.Bi

To what extent can spontaneous emission be under-
stood as stimulated emission, stimulated by the vacuum
fluctuations? This question received a good deal of
theoretical attention several years ago. ' The conclusion
most widely held was that the issue was one of interpre-
tation: The role played by vacuum fluctuations in spon-
taneous emission seemed to depend on the particular
choice of ordering for the radiation field operators, in

perturbation-theoretical treatments. Nevertheless, a
very persuasive argument was given for a completely
symmetric ordering which led to Hermitean operators at
every stage of the calculation, and thus to "interpret-
able" quantities. In this approach the effects of vacuum
fluctuations could be understood as arising from the
presence of a vacuum field corresponding to an extra half
photon per mode (with a totally random phase). Spon-
taneous emission in a given mode, with n real photons
present, appears as a 1 in a factor n+I (that is, as if
there was an one extra photon in the field). The result
above suggests that stimulated radiation due to vacuum
fluctuations could account for one half of sp-ontaneous
emission in a given mode, i.e., one half of the extra pho-
ton.

Could this stimulated part of spontaneous emission be
observable? One distinctive feature of stimulated emis-
sion is that it is in phase with the stimulating field. Vac-
uum fluctuations have no particular phase, nor do the
zero-point fluctuations of, for instance, a coherent state
(i.e. , the fluctuations of the operator a —(a)). But we
know now, both theoretically and experimentally, that
it is possible to "squeeze" the vacuum, to produce a state
with an anisotropic distribution of phase fluctuations.
The possibility immediately arises of studying spontane-
ous emission in such a field. In particular, one would
expect that if there really is a part of spontaneous emis-
sion that may be identified with amplified zero-point
noise, it should be sensitive to the squeezing of this noise.

The laser is a natural system to investigate these phe-

nomena, for it is based on stimulated emission and
(ideally) limited by spontaneous emission. The so-called
Schawlow-Townes linewidth is usually attributed to the
emission of one spontaneous photon, with random phase,
every I/y sec (where y is the cavity loss rate). If no is
the average number of photons in the laser cavity, the
average squared phase change induced by the spontane-
ous photon is 8p =1/2no giving a phase diA'usion rate
D =htlt /ht = y/2no Bu.t if one could influence the
phases of the spontaneously emitted photons, this phase
diffusion rate would be modified.

In an ordinary laser, vacuum is entering the cavity
through the out-coupling mirror. If the foregoing inter-
pretation of spontaneous emission is correct, some of the
spontaneously emitted photons result from amplifying
the fluctuations of this vacuum (along with those of the
intracavity field). Hence the injection of a "squeezed
vacuum" should partially bias the phases of the spon-
taneously emitted photons and modify the laser phase-
diAusion rate.

This is precisely the result that this Letter establishes.
As shown below, the ultimate linewidth of a laser cou-
pled to a squeezed vacuum (on the other side of the out-
put mirror) may be reduced by as much as a factor of —,

'

(in the limit of negligible absorption losses and infinite
squeezing).

The physical system to be considered is most simply il-
lustrated by the ring laser of Fig. 1, with only one
running-wave mode above threshold. The dashed line in-
dicates the mode of the external field which couples to
the lasing mode. (The ring arrangement is not really
necessary; one could as well couple to a standing-wave
cavity by using a polarization rotator and reflection po-
larizers. )

The conventional laser theory ' needs to be modified
to allow for the fact that the external field leaking into
the cavity is not ordinary vacuum. As Yamamoto, Ma-
chlda and Nllsson" suggest one may write a quantum
Langevin equation for the intracavity field as follows:

da/dt = —
—,
' [y

—a (N p
—N t ) ]a +G„(t) +F, (t ) + F, (t ).
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All the Langevin operators in (1) commute with one
another at all times. The correlation function for G„ is

(G,', (t)G., (t ')) =aN26(t t ')—
,

(G,i(t)G„(t')) =aNiB(t —t'),
(2a)

(2b)

while (G„(t))=(G„(t)G„(t'))=0. The operators F,
and F, may be written in terms of boson annihilation
operators c(to) and b( to) as follows':

F= ~a

27'
„dtoe ' ' 'c(to), (3a)

F, =
2x

J"dtoe ' ' 'b(to), (3b)

FIG. l. Experimental arrangement considered: A single-
mode ring laser coupled to the outside world by a partially
transmitting mirror. The dashed line indicates the mode of the
external field which couples to the intracavity field.

Here Nq and N~ are the operators for the populations
of the upper and lower lasing levels, respectively, and

G„, F„and F, are Langevin-force operators, associated
respectively with the atomic dipole (after adiabatic elim-
ination of the same; see Lax and Louisell ), the absorp-
tion (and other essentially irreversible) losses for the ra-
diation field, and the transmission losses. The constant a
is a linear gain coefficient ("gain rate per atom").

where coo is the nominal frequency of the laser field, and
y, and y, are the cavity loss rates associated with the ab-
sorption and transmission losses, respectively.

The field described by the operators c(co) is taken to
be a pure vacuum (more properly, a thermal field, but
the number of thermal photons at optical frequencies at
room temperature is small enough to be negligible). The
field described by the b( )to, on the other hand, is the
outside field (dashed line in Fig. 1) being transmitted
into the cavity through the out coupling mirror, and it
may be a squeeze field.

Assume, indeed, that the b modes are uniformly
squeezed vacuum (with a bandwidth larger than the cav-
ity y) so that their state is given by'

~ yb) = Q exp[ —re ' b(top+e)b(top —e)+re ' bt(top+ e)bt(cop —e)] ~0),
e&0

where r is a real, positive "squeeze parameter. " Then the correlation functions for the Langevin operator F, are

(F, (t)F, (t ')) = y, sinh r6(t —t '),

(F, (t)Ft(t ')) = y, (sinh r+1)b(t —t '),

(F, (t)F, (t')) =y, (sinhrcoshr)e ' 6(t —t'),

(F, (t)F, (t ')) = y, (sinhr coshr)e ' 6(t —t ').

(4)

(Sa)

(Sb)

(Sc)

(Sd)

Equations (5a) and (5b) are the same that would hold for a thermal field with an average number of photons
n =sinh r [In particular, .F, is taken to satisfy (Sa) and (Sb) with r =0 (n =0).] But Eqs. (Sc) and (5d) are unique
to the squeezed-state input and exhibit its phase-sensitive nature: For a field with random uniformly distributed phase
Iluctuations (such as F, ) the right-hand sides of Eqs. (Sc) and (5d) would be zero.

The Langevin equations for the field a [Eq. (1)] and the populations N
~

and N2 (see Ref. 9) may now be solved near
the steady state by a quasilinearization procedure (as in, e.g. , Ref. 8, Chap. 20) to obtain the phase diffusion rate. The
result is

D =((Ap) )/ht =(4np) [a( Np2+Neap) +y, + y, +2y, sinh r —2y; sinhrcoshrcos(2& —20)] (6)

(the subscript 0 denotes steady-state average values).
Together, y, and y, makeup the total loss rate y of the cavity, and in steady state a(N2p N~p) = y + y„so that, for

large inversion (Npp)) N]p) and with no squeezing (r =0) the second and third terms of (6) add up to equal the first
one and give a total diA'usion rate of D = y/4np+ y/4np = y/2np But now suppo. se that the squeezed light is shined upon
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the cavity. Choosing the phase of the squeezed field 0=(t or O=p+tr yields

D=(4no) '[y+ y, + y, e '"l. (7)

If y, && y„ then y= y„and the possibility of reducing the laser linewidth D by essentially a factor of —, is apparent
from Eq. (7).

The same result may be established in a somewhat more formal manner by making use of the master equation for the
intracavity field density operator and the associated Fokker-Planck equation. Gardiner and Collett' have shown how
the loss-related part of the master equation is written with a squeezed input. For the state (4)

(r1p/Bt)t = —,
'

y, (1+sinh r)(2apat —a ap —pa a)+ —,
'

y, sinh r(2a gapa
—aa p —paa )

—
—,
'

y, sinhr coshr[e z'a(a tpa t —a ta tp —

patent

t)+ H.c.].

(The subscript t is used to denote the part of Bp/t)t due to transmission. ) The corresponding part of the Fokker-Planck
equation for the function P(a) may be seen to contain the phase diA'usion term

(y, /4n)(tl /8& ) [[sinh r —sinhr coshr cos(2& —28)]P(n, g)] (9)

(where the coherent-state amplitude a has been written
as tt =n '/ e '~). Note that none of these terms is
present when the squeezed vacuum is replaced by ordi-
nary vacuum (r 0); the vacuum Auctuations (which
are entering the cavity all the time, through the out cou-
pling mirror) do not explicitly show up in the Fokker-
Planck equation. This is consistent with the fact that the
P representation is appropriate for normally ordered
operators, and when normal ordering is used vacuum
fluctuations tend to drop from the picture. '

When squeezing is present, however, the dift'usion

coefficient in Eq. (9) may add to, or subtract from, the
usual phase diA'usion coefficient a(Nzo Nip)/4no, to
yield the same result expressed by Eq. (6). The interpre-
tation of this result has already been suggested: The
squeezed state has less noise in its phase quadrature than
the vacuum. This causes the spontaneously emitted pho-
tons to have phases preferentially near 0 or 0++. When
&=8 or 0+tr, this slows down the laser phase diAusion
process. Note that the actual rate of spontaneous emis-
sion is still equal to y to a very good approximation,
since the steady-state condition saturated gain=loss is

not modified much by the relatively small number of
photons (sinh r) entering now through the output mir-
ror.

Why is only a reduction of one-half achievable? It
may be seen from Eq. (I) that in the absence of' the gain
medium the field in the cavity would become as squeezed
as the outside field; for infinite squeezing, it would have a
perfectly well-defined phase (up to an additive tr). If
spontaneous emission were only amplified zero-point
noise, no phase diff'usion should result. The residual
phase diAusion stems from the addition, at a rate y, of
about half a photon's worth of phase-insensitive noise—the amplifier's "added noise, " in the language of
Caves's paper' —which may be said to constitute the
other half of spontaneous emission; this is contained in

the operator G„ in Eq. (1).
From an experimental point of view, the main signa-

ture of the eAect described here might be its dependence

! on the phase 8 of the squeezed field (see Fig. 2). This
might sufTice to distinguish it from, e.g. , injection lock-
ing. In practice, the possibility of injection locking tak-
ing place in this system must be considered, because it is
likely to occur if the external field is not pure "squeezed
vacuum, " but has a small coherent component (in other
words, if (F, )~0). Even when (F, ) =0, a careful
analysis reveals the existence of a phase-locking term'
with a characteristic locking time r=2noe "/), . In the
presence of phase locking however, the change in the
phase diff'usion rate could still be observed by looking at
the evolution of the system in times shorter than the

2

FIG. 2. Laser linewidth (phase-diff'usion rate) D =Attt /At,
plotted in units of y, /4no, for a hypothetical case with y,
=0.05@„as a function of the phase difference between the
squeezed external field and the intracavity field. The line a
shows the usual Schawlow-Townes linewidth for zero squeezing
(laser coupled to ordinary vacuum). Curve b is drawn for the
case when the external field is 80% squeezed (e '=0.2). The
cross e shows the theoretically possible reduction of the
linewidth for infinite squeezing and zero absorption losses. The
minima of curve b correspond to a 38% reduction below the
Schawlow- Townes linewidth.
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locking time r: In normal injection locking the rate of
diffusion for times shorter than ~ is still essentially the
Schawlow-Townes linewidth, whereas here it could be al-
most twice as small.

Alternatively, one might consider driving the squeez-
ing device with the laser field itself, so that 8 in Eqs. (6)
or (9) is actually determined by the instantaneous value
of p. The detailed theory of such an arrangement
remains to be worked out, but it seems clear that no
locking of the phase should take place under these condi-
tions.

Two concluding remarks: The condition y, (( y, is
essential to achieve the linewidth reductions discussed
here. Transmission losses are controllable and can be
made phase sensitive [see Eqs. (5c) and (Sd)], while ab-
sorption losses are typically phase insensitive and repre-
sent therefore the true ultimate limit to any reduction in
the system's fluctuations's (unless one is interested in
measurement times smaller than y, ', that is).

The efIect predicted here is difterent from the one dis-
cussed in Ref. 6 (inhibition of dipole decay). Indeed, for
the purpose of this paper the atomic dipole may be as-
sumed to decay at its usual rate, since only one plane-
wave mode of the field is squeezed (Ref. 6 then shows
the change in the decay rate to be negligible). Yet, pre-
cisely because of this approximately one-dimensional sit-
uation (only the spontaneous emission in the lasing mode
contributes to the laser linewidth), this efl'ect might be
more readily observable than the inhibition of dipole de-
cay of Ref. 6.

I am grateful to L. M. Pedrotti, M. S. Zubairy, M. O.
Scully, and C. M. Caves for useful discussions. This
work has been supported by the U.S. Air Force Oftice of
Scientific Research and the U.S. 0%ce of Naval Re-
search.
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