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Exact Tricritical Exponents for Polymers at the e Point in Two Dimensions
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We propose the exact values of the tricritical exponents of a collapsing polymer in two dimensions:
v 7 f 7 and p = —,

' . They are obtained in a model of self-avoiding walk on a hexagonal lattice, with
random forbidden hexagons, whose percolation threshold gives the exact tricritical point. The infinitely
many exact tricritical exponents then derived from Coulomb gas methods are critical exponents of the
O(n =1) Ising model below T, The n. umerical check is very good.

PACS numbers: 36.20.Ey, 64.60.Ak, 64.60.Kw, 75.40.Cx

The possibility for a polymer chain in a solvent to un-
dergo a collapse transition by having random Aight di-
mensions at a certain temperature 8 was discovered by
Flory in 1949. ' It was shown by de Gennes, three de-
cades later, that this 6 transition corresponds to a tricrit-
ical point (TP), while long polymers in a good solvent
form a critical system. Three dimensions (3D) is the
upper tricritical dimension, above which tricritical ex-
ponents take their mean-field values. Hence, in 3D, log-
arithmic deviations from the Gaussian behavior are ex-
pected for chains at the 6 point, which can be ob-
served experimentally. The situation is quite different
in two dimensions (2D) where new nontrivial tricritical
exponents are expected, and are of experimental in-
terest. Expansions in t. '=3 —d of these exponents have
been developed ' leading to some controversies, '' now
resolved. ' However, one must note that these t.

' = 3 —d
expansions are highly asymptotic ' and cannot yield
directly precise values in 2D. 2D tricritical exponents
for polymers are not known exactly so far, except on
fractals, ' whereas infinitely many exact values of the
critical exponents for dilute self-avoiding walks (SAW)
or compact ones in 2D have been derived, ' ' starting
from original works in 1982. ' A lot of numerical stud-
ies have been devoted' to the collapse of polymers for
d =2.

The most studied quantity is the exponent v which
governs the chain size at the 8 point. It must be larger
than the Brownian value v= —,', which corresponds also
to a compact chain in 2D. Numerical results are quite
dispersed. Monte Carlo calculations gave v=0.505,
series enumerations ' v =0.51 + 0.01 or v =0.53
~ 0.03 and transfer matrices v=0.55+ 0.01. A value
was also experimentally determined, v =0.56+ 0.01.
The crossover exponent p reads p = v/v' where v' charac-
terizes the divergence of the thermal correlation length
as the temperature becomes close to 6. Monte Carlo
calculations and enumerations ' suggest similar val-
ues p =0.64+ 0.05, while the transfer-matrix meth-
od gives p =0.48 ~ 0.07. Finally, the exponent y which
governs the number of configurations at B has been only

recently studied, with the estimate @=1+0.05. Nu-
merical studies are especially difficult. The TP is not
exactly known, and dificult to locate. It is indeed unsta-
ble, separating stable excluded-volume and condensed-
polymer phases. Also dense polymers lead to strong os-
cillations, ' parity eA'ects, and sensitivity to bound-
ary conditions ' which aAect the nearby 6 point.

We provide here a new tricritical model of SAW on
the honeycomb lattice with vacancies. It allows the ex-
act determination of the TP and of the tricritical ex-
ponents v = —', , ) = —', , and p = —', , from Coulomb-gas
methods in 2D. An infinite series of higher ex-
ponents is also given. Surprisingly, these tricritica1 ex-
ponents are those of the O(n =1) Ising model, in its
lo~-temperature phase which is also critical. ' ' They
are also exponents of the q =1 Potts model at its critical
point. Note that vacancies have been introduced
in a diAerent context. As will appear below, our model is
inspired from the analogy found by Coniglio et al. be-
tween a polymer chain at the 6 point and the hull ' of
a percolation cluster, and is thus also related to kinet-
ic ' or "dressed" walks.

We consider a SAW on a dilute honeycomb lattice,
the faces of which are absent with probability p. Edges
of absent hexagons are forbidden for the SAW (Fig. 1).
The model is annealed and every quantity is calculated
by summation over the compatible configurations C of
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FIG. 1. A SAW of length I =18 in the presence of vacancies
(hatched hexagons). The number of hexagons touching the
SAW is H =16, and there are N2=1 (N3=1) faces of type 2

(type 3), with two (three) sequences of links on it.
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the SAW and C' of the vacancies. Summing first on C'
gives to any C a weight (I —p), where H is the number
of hexagons sharing edges with the chain. For a
stretched chain, H is equal to l+ I (l is the number of
links) since the first link is the edge of two faces, and
each subsequent one adds a new face dressing the chain.
When the polymer folds onto itself H is diminished each
time several nonsuccessive pieces of the chain touch the
same hexagon. If there are two such connected pieces on
a face (faces of type 2, Fig. I) H is lowered by I, and by
2 if there are three such pieces (faces of type 3). The

I+ 1
—N2 —2%3weight can be rewritten (I —p) ' ', where tV2

and N3 are the numbers of type-2 and -3 faces. It clear-
ly favorizes collapsed configurations. In fact, since it is
determined by local properties only, it is equivalent to a
certain type of short-range attractions, depending on
nearest-neighbor and next-nearest-neighbor edges on the
lattice. Our model is thus expected to be in the same
universality class as the usual 6-point ' ones.

Probability p governs the attraction energy between
monorners and provides the usual "thermal" scaling field
in tricritical phenomena. The site percolation threshold
(on the dual triangular lattice) is p, = ~z. If p & 2 the
vacancies do not percolate. They disappear under suc-
cessive renormalizations, reaching the p =0 fixed point.
Hence the large-scale behavior of the chain has the usual
(dilute) exponents. ' ' In contrast to this, for p & —,

'

the vacancies percolate and renormalization Aows toward
the p =1 fixed point. We then expect the chain to be
compact with dense exponents. ' Thus p & —,

'
(p & —,

' )
corresponds to the high- (low-) temperature behavior of
the chain, and p, = —,

' is the TP.
Connected sets of missing faces C ' can be represented

by their perimeters (Fig. I ) which form nonintersecting
self-avoiding loops. Now, at p, = 2, present and missing
faces are equally probable. Hence the perimeters form a
gas of arbitrary loops, which all have the same (relative)
weight 1. This is just the O(n) loop model of
Nienhuis ' on the hexagonal lattice, with partition
function

Z„= g K~np, (I)
graphs

the sum being taken over graphs formed by P perimeter
loops and made of a total number 8 of bonds, here in the
case n = I, K = I (Ising model). K = I is in the low-
temperature phase of the O(n = I) model [the critical
point of (I) for n = I is' K, = I/J3], which is known2
to be critical, with a universality class independent of
K & K, . Our model was primarily devised for an open
SAW, but we can consider a closed one, the properties of
which are, at the 8 point, those of any loop in the O(n)
model (I ) for n = I, K =1. Indeed, although this SAW
loop and the polygons surrounding clusters of vacancies
do not have the same origin, they are indistinguishable.
We thus recover the nice conclusion by Coniglio et al.
that a ring polymer at 6 has the properties of a cluster

perimeter (hull) at the percolation threshold.
The first of the tricritical exponents, v, defined by

R —l ', where R is the size of a chain (or ring) of
length l, follows as v= I/Dtt, where DH is the hull
fractal dimension. Its value DH = —,

' has been recently
obtained with use of the above equivalence to the n =1
Ising model and Coulomb-gas methods, confirming
several conjectures. Hence

v=
7 =0.5714.

Second, the crossover exponent p is obtained by our not-
ing that the collapse transition is driven by the percola-
tion of vacancies. The thermal scaling field is p —p„
with a percolation correlation length diverging like

~ p —p, ~

' where v'= —, . Thus

P = v/v' = —', =0.4286. (3)

Finally the exponent y is defined by

Z( =pe(I p, ) H- ptl—" ', l )) I, (4)

where Zt is the partition function of an open chain of
length I and p generalizes the usual SAW connectively
constant. To obtain y we introduce a correlation func-
tion

G(r, r') =QtZt(r, r')K', (s)
where Zt(r, r') is a partition function similar to (4),
where the configurations C relate r to r'. G given by (5)
is the standard diagrammatic expansion of the noncon-
nected spin-spin correlation function in the (hexagonal)
Ising model. Since at the 0 point K = I (low-
temperature phase), there is a spontaneous magnetiza-
tion, and G —~r —r'~ "goes to a constant at large dis-
tance; hence g =0. With the usual scaling relation we
obtain'

y = (2 —
tl ) v = —', = I . I 428. (6)

Note also that p =K ' =1. While v is also the exponent
of the indefinitely growing SAW (IGSAW) as noticed in
Refs. 29, 31, and 32, this is not true for y (= I for IG-
SA W) since Zt involves "self-trapped" configurations.
Note that determining y is not possible by the considera-
tion of only percolation hulls as in Ref. 29.

These results can be checked numerically. We calcu-
late (5) on strips of width w with periodic boundary con-
ditions with the transfer matrix. The correlation
length obeys the finite-size scaling form close to 6,

g =wF(w 't"(K —p '), w ' "'(p —p, ) ).

Phenomenological renormalization equations

g„/w =g, /(w —I ) =g, /(w —2)

give estimates of p and p„while the derivatives give
v, v'. Our results (Table I) converge rapidly to the ex-
pected values. At K=p ' and p =p„g„ is exactly
infinite on periodic strips of any width. Indeed, the
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TABLE I. Estimates of v, v' obtained by phenomenological
renormalization. These converge rapidly to the expected
values.

FrirS JL,ii~iJi roars,

3

4
5

6
7
8

Expected

0.553 59
0.566 31
0.568 38
0.570 22
0.570 73
0.571 06

—', =0.57143

1.6246
1.4174
1.3511
1.3464
1.3405

—, =1.3332

FIG. 2. A configuration contributing to Gi(r —r'), made of
L =3 lines connecting r to r', P =2 perimeter loops encircling
vacancies, and 8 =46 bonds (lengths of the three lines plus
perimeters).

transfer matrix acts on a polymer with extremities at
infinity, which is thus never self-trapped. The arguments
of Coniglio et al. give then the correct result here,
G(r, r') = I, and thus g„=~. Conformal invariance
gives g„=w/trtl, and hence ti=0. But the scaling rela-
tion (6) holds only for SAW and not for the kinetic IG-
SA W.

v and y are particular cases of an infinite series of
exponents. Consider indeed the correlation function
GL (r —r ') of the 0 (n ) model defined as '

GL(r —r') = g K n,
C L (r, r')

(7)

x,' =L(L —I )/6. (9)

Other exponents are now derived from (8) and (9).
Let P(r) be the probability that two points r~ and r2

on a SAW at B are at a distance r =
~

r~
—r2~. For

where the graphs CL(r, r') on the honeycomb lattice are
made of L lines joining the neighborhood of r to that of
r', P external perimeter loops, and a total number 8 of
bonds (Fig. 2). As above, for n = I and K = I, GL is the
partition function of L SA W s at 8, tied by their extrem-
ities at r and r'. From previous works' ' on the O(n)
model, we know that at criticality GL decays like

Gt (r —r') —
~
r —r'

~

",where the critical exponent xt
can be obtained exactly by the Coulomb-gas method, '

xL =gL /8 —(g —I ) /2g, where g parametrizes n
= —2costrg, and g C [1,2] at K =K„and g E [0, 1] for
K& K, . Here n=1, g= —,', and

xt = (L —1)/12.

tl, y, and v are given by' ' ti=2x~, y=(2 —2x~)v, and
v '=2 —x2. We thus recover tI=0 and the values (2)
and (6). For L ~ 3, xL gives the tricritical scaling di-
mensions of higher L-leg polymer vertices. ' ' Gt (7)
can be generalized to the ordinary surface transition
of the O(n) model, by our letting the points r and r' in

(7) go to a boundary line. Then a new scaling dimension
xL appears, ' ' xL = —,

'
gL + —,

' L(g —I). Hence for

g = —', , we find the exact tricritical polymer surface ex-
ponents

r 0, P(r) —r, where 0 is a universal contact ex-
ponent, ' with Oo [ = (y —I )/v] for the contact of the
two ends, 0~ for that of one end inside the chain, and 02
for that of two interior points. One proves' ' Oo=x2
—2x ~, 0~ =x3 —x2 —x t t and 82 =x4 —2x2. Using (8)
we find at B the exact values 00 = 4, 0~ = I'2, and
02= 4 . For dense SAW's' 00 = —,', 0] = —,', and

02 =
4 . Hence, contrary to a naive intuition, SAW's at

8 are less repulsive at short distance than compact ones.
Imagine a branched polymer' 5' in 2D made of JV'

identical chains of lengths I tied together at nL (L ~ I )
L-leg vertices, with an arbitrary but fixed topology. The
number of configurations of 0 scales like'

Z, —peti"' ' (i))1), (10)

Hence, the 2D exact value is at 6

y = g nL —,', (2 —L)(2L+25) —
—,'.

For instance, for an L-arm star at B, n ~
=L, nL =1, and

y=( —L +3L+22)/21. A similar formula exists for
branched polymers grafted onto a surface. In particular,
the usual exponents y~ (y~~) for a linear chain graft-
ed by one (two) extremity on the surface are y~

=(2 —x~ —x])v= —', and y~~ =(I —2x])v= —,', satisfy-
ing Barber's scaling law y+ v=2y] —

y~~ generalized
to a TP.

It is now known' ' ' that scaling dimensions like
xL (8) and xL (9) belong to the so-called Kac table of
the associated conformal theory, parametrized as

h~ z
= [[(m + I )p —mq] —I]/4m (m + I ),

with a central charge c = I —6/m(m+ I), where p, q,
and m are integers. Here we have c =0, m =2, and Eqs.
(8) and (9) read xL =2hL L and xL =h~ L+~. A central
charge c =0 was expected, as in the dilute case. '

ln conclusion, for L even, the xL (8) have also a physi-
cal meaning for percolation hulls in 2D. In Ref. 29 a
notation B' has been used to distinguish a smart kinetic

where yg is a universal exponent, which generalizes y in

(4). From renormalization theory one finds '

yg= g nL[(2 —xL) v —
—,
' L]+ I —2v.
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walk ' or an IGSAW from a SAW at 6 with attrac-
tive two-body interactions. We believe that this is not
necessary, from the equivalence discussed above. Note
finally that here in 2D a tricritical O(n =0) model maps
onto a critical low-T Ising model. It would be most in-

teresting to extend this to any n.
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