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Evidence is presented for five closely spaced states in !'"8Cd near Ex=2 MeV, which are interpreted
as a near-harmonic three-phonon quintuplet. Candidates for even higher-lying multiphonon states are
also found. The experimental spectrum is compared with an anharmonic vibrator [or U(5) spectrum]
and an interacting-boson-approximation calculation incorporating a two-particle, four-hole intruder con-

figuration.

PACS numbers: 21.10.Re, 21.60.Ev, 23.20.En, 23.20.Gq

The geometrical concepts of the spherical vibrator'
and axially deformed rotor? are two benchmarks of
nuclear-structure physics. The excitations of the former
show equally spaced, degenerate phonon multiplets,
whereas the structure for deformed nuclei is rotational in
character. Although evidence abounds for deformed nu-
clei, the existence of spherical nuclei with nearly har-
monic vibrational structure has come to be viewed with
some degree of skepticism due to the lack of experimen-
tal support.> While many even-even nuclei near closed
shells have an (E,+),/(E,+), ratio of = 2, the expected,
closely spaced 0%, 2%, and 47 triplet of two-phonon
states is seldom observed.* Evidence for three- and
more-phonon levels is virtually nonexistent. The best
known candidate for a vibrational character may be
102Ru, but even here, the levels of the three-phonon
quintuplet are rather widely spaced and the interconnect-
ing E2 transitions strongly violate the ANy, = X | selec-
tion rule. The Cd nuclei with Z =48 have also tradition-
ally been considered as possible examples of vibrational
structure. However, their low-lying levels display extra
degrees of freedom. In fact, in ''>!'* Cd, there are five
states® at the energy of the two-phonon triplet. Recent-
ly, these extra states have been successfully interpreted®
in terms of the coexistence and mixing of normal vibra-
tional states with two-particle, four-hole (2p-4h) in-
truder states which arise from the excitation of a pair of
protons across the Z =50 shell gap. The result is a V-
shaped energy systematics for the intruding configura-
tion with a minimum near midshell and a rise thereaf-
ter.®

The testing of these ideas was a primary motivation
for the detailed study’ of intruder states in two neutron-
rich isotopes of Cd (4 =118,120), where it was indeed
found that the intruding configuration is higher in energy

than in ''>!'"%Cd. Similar results have been obtained®
for a series of Pb nuclei. The interesting point for the
present purpose is that, in ''8Cd, the lowest intruder lev-
el lies well above the two-phonon triplet of states. Thus,
its mixing with the normal states is reduced, thereby pro-
viding a unique opportunity to isolate the latter and to
test their description in terms of a nearly unperturbed vi-
brational structure.

The purpose of this Letter is, therefore, to report on
the first observation of a set of closely spaced levels
which seem to represent a complete, nearly harmonic,
three-phonon multiplet and to discuss the vibrational
structure of ''¥Cd.

The Cd nuclei were studied from the decay of Ag nu-
clei produced at the isotope separator TRISTAN at
Brookhaven National Laboratory by fission of enriched
23U in a modified Febiad-type® ion source. The ra-
dioactive beam of fission fragments is ionized, extracted,
mass separated, and electrostatically focused onto a mov-
able aluminized-Mylar tape system at a suitable count-
ing station. The measurements included y-ray singles,
y-y coincidences, B singles, -y coincidences, y-y angu-
lar correlations, and y multispectrum scaling. The re-
sulting coincidence relations were used to construct ex-
tensive level schemes; the angular correlations were used
to assign level spins and the singles y-ray data to extract
transition branching ratios. Full details will be published
separately: The main emphasis here is on the five closely
spaced states found near 2 MeV in ''"®Cd. Especially im-
portant for these were the angular correlation measure-
ments which were made by a multidetector technique'®
with four Ge detectors positioned to provide six different
pair combinations at angles of 90°, 105°, 120°, 135°,
150°, and 165°. Examples of the correlations analyzed
by the arctand method!! are shown in Fig. 1. For the
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FIG. 1. Top: Two angular correlations in ''8Cd (normalized to unity at 90°). Solid line: Theoretical correlation for the adopted
spin sequence and mixing ratio. Bottom: X2 values for fits with different spin sequences and & values. (Horizontal lines give various
confidence limits.) & is the ratio (L+1)/L, where L is the highest multipole in a given J,— J, transition. Single points are shown
at arctand =0, where L + 1 is greater than 2. The point for 0% is off scale for the 1604-488-0 cascade.

1428-488-0 cascade the X% minimum occurs for J =2 at
arctand =75°, corresponding to a transition with 79%
E2 and 21% M1 mixed multipolarity and a 2% assign-
ment for the 1916-keV level. The 1604-488-0 cascade is
seen to have a minimum in ¥2 for J=3 at arctané
= —53°, yielding a transition multipolarity with 57%
E2 and 43% M1, and a 3+ assignment for the level at
2092 keV. Similarly, the 2074-keV level can be assigned
as 0%, The correlation data for the 1929-keV level allow
J=3,4. If J=4, the x?* minimum is at arctand=33°
(39% E2). If J=3, the data give pure E2 multipolari-
ty. The measured correlation of the 1936-keV level does
not allow any effective spin discrimination but, when it is
combined with the y-multiscaling data, J” can be re-
stricted to 5%, 67, and, less likely, 4*.

In summary, we have found a quintuplet of levels in
118Cd near 2 MeV, three of which have definitive assign-
ments of 0%, 2%, and 3*. The spins of the remaining
two levels at 1929 and 1936 keV are less certain but con-
sistent with the assignments 4% and 6%, respectively,
which we shall assume for the remainder of our discus-
sion. The level scheme from this study for '"®Cd is
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shown in Fig. 2. The most remarkable feature is the ob-
served clustering of levels, a 2% state at 488 keV, a
closely spaced triplet of 4%, 2% and 0™ levels at 1165,
1270, and 1286 keV, respectively, a rather isolated in-
truder 07 state at 1615 keV, and a set of five closely
spaced levels near 2 MeV.

In addition to the close spacing of the latter group,
there is a strong preference for decay to the two-phonon
triplet levels rather than to the one-phonon 2% state.
For example, the E2 branching ratios for the 1916-keV
2% and 1929-keV 47 levels are

B(E2;2% — 250,)/B(E2;2 %) =33,
B(E2;4% — 255,)/B(E2;4% — 215,) =100.

A broader view of this dominance is shown on the right-
hand side of Fig. 2 by means of the average E2 branch-
ing ratios for the triplet and quintuplet levels. The
description of these levels as rather pure two-and-three-
phonon multiplets is thus strongly supported. A more
detailed test of the vibrational wave functions is the rela-
tive £2 branching ratios of allowed transitions. Both the



VOLUME 59, NUMBER 5

PHYSICAL REVIEW LETTERS

3 AUGUST 1987

N
2620.96 il
B
2471.79 5S35
2322.30-5g9—LPT
N 2223.29- 990
e ©
-2 N
-5+ S
-3t Ny mIN &3 ]
ot gggqg&’g« Se 2091.64 37 Ne—
:0+ —6t mwcgcngw ~-2073.68 0+ oat
94 N OSBRI 1935.90 51,67 (47)
-4 Selallll 5% 3
=2 528082085083 '
—2* g 0TI TTTT o
;'l' I 1615.04 0"
S |
229—’0 1 !

o, peYT! : e
O =gt Read by 1285.81 oF AAAL
L : 126953 2%

_a 1164.90 4 \AS
=]
ow
-9
o
—2t
ot 487.77 2*
—o0" —0* 0.0 o* —
IBA-2 Y(5) 118Cd
Anharmonic
vibrator

FIG. 2. Partial level scheme for "8 Cd: Transition arrows and relative B(E2) branching ratios are indicated on the vertical lines
for levels with more than one observed decay route. Upper limits are shown for (dashed) unobserved transitions. A few of the
unusual decay routes of higher lying states are also included. At the left are comparisons with IBA-2 calculations (Ref. 12) and
with the identical predictions of the U(5) limit (Ref. 13) of IBA-1 and an anharmonic vibrator (Ref. 14). The thicker lines for the
IBA-2 calculations are the intruder levels. To the right are the average of the B(E2) ratios showing the preferred depopulation of

the three- and two-phonon states by ANy, =1 transitions.

1929- and 2092-keV levels decay by two y rays to
members of the two-phonon triplet. For the latter, the
empirical branching ratio of 2.78 is in good agreement
with the pure vibrator!S value B(E2;3;f—2%?)/
B(E2;3{" — 4{"1) =2.5 but for the 1929-keV level, the
empirical ratio B(E2;4;" — 255)/B(E2;45 — 4{") is 10.6
in disagreement with the predicted value of 1.1.

Since the multiplet levels in ''8Cd are closely spaced
but not rigorously degenerate, it is interesting to com-
pare the observed level structure with an anharmonic-
vibrator model. The eigenvalue equation of the U(5)
intg:racting-boson-approximation (IBA) Hamiltonian
is!

E=eng+ ¥ ang(ng—1)+p(ny—v)(ng+v+3)
)

where ¢, a, B, and y are parameters, and ny and v are
quantum numbers giving the total number of d bosons
and the number of d bosons not pairwise coupled to zero
angular momentum, respectively. This equation permits
much flexibility and highly anharmonic level sequences
can be produced. Nevertheless, although the U(5) limit

+y[L(L+1) —6n4],

encompasses a rich variety of possibilities, one can write
down universal expressions for the ny=3 (or three-
phonon quintuplet) level in terms of those for the ny =1
and 2 (one- and two-phonon) states, that are parameter
independent. These are given in Table 1. It is also possi-
ble to introduce anharmonicities in the geometric vibra-
tional model. In Ref. 14, the Hamiltonian H =H,+ H,
+H, was studied where H, is the harmonic vibrator
Hamiltonian, and H. and H, represent the most general
set of cubic and quartic anharmonic terms, which are
treated in lowest-order perturbation theory. Again,
two-phonon anharmonicities can be used to calculate en-
ergies of the three-phonon quintuplet. It is useful to em-
phasize the interesting result, not widely known, that the
anharmonic-vibrator predictions are precisely the same
as for the U(5) symmetry (Table I). A comparison of
these U(5) and anharmonic-vibrator predictions with the
data is shown in Fig. 2. The predictions are in qualita-
tive but clearly not quantitative agreement with the ob-
served excitation structure, indicating that the normal
states of ''8Cd cannot be quite so simply described.
Detailed calculations in the configuration-mixing ap-
proach'® in the IBA-2 have also been performed'? for
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TABLE 1. Energies of the three-phonon quintuplet in the U(5) limit of the IBA and also in

the anharmonic vibrator of Ref. 14.

ng L~” Energies

3 6, 3E@4T) —3EQ)

3 45 —3EQN)+2EUWH+ Y EQH)

3 37 —3EQN+SEUH+ L EQH)

3 25 —3EQHN)+XEGH+FEQH+LEWON)
3 05" 3EQRF)—3EQf

118Cd. Since 'J§Cd; has 12 valence-neutron holes, N,
=6. Similarly, for the normal states, NV, =1, while for
the two-particle, four-hole intruder levels, V,=3. Thus,
the Hamiltonian is

H=Hy =+ Hy =3+ Hnuix,

where the first two terms are standard IBA-2 Hamiltoni-
ans for different N, values. The resulting energies are
also shown in Fig. 2. The 2;' state and two-phonon trip-
let levels are in good agreement with experiment. The
third calculated state at 1.831 MeV has a large N,=3
component and is identified as the intruder. It is within
== 200 keV of the observed energy. Also in agreement
with experiment is the predicted splitting of the quintup-
let levels into two groups, the lower consisting of 6 1, 4%,
2%, and the higher one containing 0%, 3%,

Finally, there is one other surprising feature of the
empirical ''"8Cd level scheme. Above the quintuplet,
there are several levels whose relative decay favors popu-
lation of quintuplet levels by orders of magnitude. For
example, on the assumption of pure E2 multipolarities,
Fig. 2 shows that the 2223- and 2322-keV levels popu-
late levels of the quintuplet by low-energy y rays whose
relative B(E2) values dominate the higher-energy decay
transitions by factors of 35000 and 820. This gives rise
to the speculation that these two levels may even contain
amplitudes for a four-phonon structure. In addition,
there are levels at still higher excitation energies which,
in turn, show preferential decay to these levels. These
low-energy decay routes are very unusual and defy any
standard interpretation. (Note that, if they are not E2
but rather M1 with an E; rather than E; energy depen-
dence, their dominance is numerically smaller but no less
puzzling.)

In conclusion, the identification of the set of five states
in '"8Cd, with a centroid at 1989 keV, with appropriate
spins, and with their preferential decay routes, suggests
that they comprise a nearly harmonic three-phonon exci-
tation. Possible evidence for higher phonon excitations
was also presented. These observations provide strong
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evidence, three decades after the original suggestion,
that, well-developed nuclear vibrational structure can
indeed exist and point to '8 Cd as the first well-defined
example of such behavior.
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