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Operator regulari. zation in background-field quantization facilitates the use of a perturbative expan-
sion due to Schwinger to compute Green's functions to all orders. The procedure is distinct from the
usual Feynman technique. No explicit divergences are encountered. We illustrate with a p6 theory and
discuss applications to QED, supersymmetry, axial models, and quantum gravity.

PACS numbers: 11.10.Ef, 11.10.6h

We propose a new calculational procedure for comput-
ing Green s functions in background-field quantization.
Our procedure is difterent from the usual Feynman per-
turbation expansion —we carry out the Gaussian func-
tional integral over the quantum fields prior to expand-
ing the kernel in terms of the background fields, as we
outline below. A further diA'erence between the two pro-
cedures is the approach to regularization. Rather than
regulating the initial Lagrangean, we regularize the gen-
erating functional prior to the background-field expan-
sion by regularizing the determinants and inverses of
operators which occur in the generating functional after
the path integral has been evaluated. For this reason we
call the procedure operator regularization.

X = —,
' h;MI(f)hI+ —,azk(f)h;hlhk+ , btjkth;h~hkht—
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A distinct advantage of our procedure is that we do
not introduce any new parameter into the action which
would interfere with the invariance of the action under a
symmetry (as, for example, dimensional regularization
interferes with supersymmetry). An unexpected bonus
of this procedure is that we never encounter any infin-
ities. Operator regularization ensures that all Green's
functions are finite; we speculate that this is a general
feature of operator regularization.

In general we split a field p; into the sum of a classical
part f; and a quantum part h;, namely

p;(x) =f, (x)+h;(x).

Initially we restrict our attention to Lagrangeans of the
form

(2)

The Euclidean generating functional Z is now evaluated. In performing the functional integral over the quantum fields
h;, we follow a procedure distinct from that used to generate Feynman diagrams. We do not separate M;~(f) into a
part M~(ol independent of f;, whose inverse becomes the Feynman propagator, and a part MJ('l(f) at least linear in f;
that is absorbed into Feynman vertices. Instead, we perform the functional integration on the full bilinear part of the
Lagrangean M;~(f) and later rely on the expansion in powers of f; given in Eq. (8) below to extract the contribution to
Z from the Green's function we wish to evaluate. Consequently, we find the Euclidean generating functional

Z(f;,J;) =sdet [MI(f)]exp dx —atlk(f) +—]/z $3 1 6
3! " 6J bJ bJ, 4! ' 6JBJ6JI BJ&

&& exp ——
&

dx IJ;M;~
' (f)JJ ] '. (3)

As the field y; may be either Bose or Fermi, it follows that M;~(f) is, in general, a supermatrix.
The fundamental quantity we regularize is the logarithm of an operator:

dn n —
1

lnA = —lims-0 ds" n t

(n = I, 2, . . . ). (4)

For reasons that will become apparent below, no divergences are encountered if the integer n is greater than or equal to
the number of "loop momentum integrals" encountered in the computation of the Green's function under examination.
Without loss of generality, we can choose n to be equal to the number of "loops. " From (4) we obtain

dn n —
1

sdetA—=exp(strleA)=exp str —tim As- 0 ds" n!
(Sa)
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and

d dn n —
1

r(A)~ —= ( —1) +' inc =lims™ods" n! r(s) (sl )

Before substituting (sa) and (5b) into (3), we rewrite
' and 2 ' in (5a) and (5b) using

dt ti. —
le

—At

r(a) "0
To one-loop order with only Bose external fields, opera-
tor regularization reduces to g-function regularization.
Green's functions can now be computed to any order
with use of the following general guidelines: (i) For
Green's functions at the m-loop level, use (3) to obtain
the appropriate skeleton expansion. (ii) At the one-loop
level, we are faced with a superdeterminant s detM
which is regulated by means of (5a) and (6). (iii) At the

~m m

=lim "
A ' '8

s 0 dS
(7)

(iv) The regulated skeleton expansion now contains fac-
tors of the form exp[ —(Ho+A~)t] and strexp[ —(Ao
+2 ~)t], where Ao is independent of f, and A

~
is at least

linear in f These fac. tors are now expanded in powers of

!
m (& 1) loop level, we are faced with expressions con-
taining strings of inverses of operators A '8 ' . - re-
gulated by means of (sb) and (6):

A '8

2

s tre
-("- ) =s tr e -""+( —t)e ""A,+ t

2

1 —(] —u)A tdue 'A)e
dp

uA PtA

p OO

g(s) = dt(t' 'tre '&'+'I").
r(s) "o

and similarly for exp[ —(Ho+A~)t]. This expansion in

powers of f allows us to identify by inspection the terms Regulation of (9) by use of (5a) and (6) gives
contributing to any particular Green's function. (v)
Such terms can be simplified by the insertion of com- Z t'1(f) =exp[ —,

' g'(0)],
piete sets of momentum states fd"p!p)(p! into the ma-
trix elements of operators. The resulting integrals are
standard.

To illustrate, let us apply operator regularization to

2, theory. To one loop ord-er,

(io)

Z ' (f) =det 't (p +Xf) (p = —ir)) (9) Applying the expansion of (8)-(11) in n =6 —2e dimen-
sions and keeping only those terms bilinear in f yields

~ QO

gag(x) = d"p f(p)f( —p)„dt t'+' ~n —[q +u(1 —u)p ]tdue
(2n)" " ~

(12)

The integrals in (12) are standard, and we find

z ~ dn P S
(s) =— f(p)f( —p) — [1+e( —', —y+ln4tr —lnp2)+s( —', —lnp2)

2 " (4tr)3 6 s+e (i3)

From (13) we note that

d -.
lim lim Pf(s) & lim lim (yf (s)

s Ods E 0 0 s 0ds
(i4)

The left-hand side of this inequality, which corresponds to operator regularization of p6 theory, yields a finite Green s
function. The right-hand side of this inequality, which corresponds to the use of dimensional regularization in the
Schwinger expansion for p6 theory, gives precisely the same value as the dimensionally regulated Feynman diagram for
this Green's function, including the pole term.

To two loop order, t-he regulated one-particle-irreducible skeleton expansion obtained from (3) is

s2Z"'(f) = lim . . . , „" 'dxyd[& !x(p'+Xf) ' '!y)1'.
~ ~ ~

(is)
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The parts of Z bilinear in f are

d' s' X4
ZJj = lim J d p f(p)f( —p) d kd qs- o ds 8 (2tr) '

(+ )
r(s+ I)»

1 1

q' (q+k+p)'

' s+1

' s+1

1

[(I —u) k'+ u (k+p) ']'"
+ d d

1
dpi dQ2r'(s+ I) "o (q+k+p)'

1

[(1 ~ ) )k 2+ ~ ( (k +p) 2] s+2

The two "loop integrations" over q and k lead to a dou-
ble pole at s =0. As a consequence of the choice of n in

(Sb) equal to the number of loops, the result obtained for

ZJ1 from (16), after all the integrals have been evalu-
ated and the limit of s going to zero is taken, contains no
uv divergence. The corresponding two-loop two-point
Green's function is, consequently, finite.

We have used operator regularization to compute a
wide variety of Green's functions. In particular, we have
applied our technique to the one-loop vacuum polariza-
tion in Yang-Mills theory in the Honerkamp gauge, the
one-loop two- and three-point Green's functions in four-
and n-dimensional QED, the two-loop vacuum polariza-
tion in QED, the one-loop graviton correction to the spi-
nor propagator, the one-loop two-point function in the
superfield Wess-Zumino model, and all one-loop two-
and three-point functions in the component Wess-
Zumino model. In all cases our results have respected
the relevant Ward identities, and no explicit divergences
are ever encountered. Details will be provided elsewhere.

The models for which these computations are carried
out are more sophisticated than the simple model used
here for illustration. Consequently, a number of in-
teresting features occur in these applications of operator
regularization.

In the P6 2, model, M;J(f) is an ordinary matrix.
When external fermion fields occur, however, M;~(f) is a
supermatrix. The simplest application of operator regu-
larization is the most obvious —regularize sdetM and
M ' (the supermatrix inverse) directly with use of Eqs.
(4)-(6). This is straightforward.

An alternative application of operator regularization
in this case would be to use either one of the two "com-
ponent" representations of sdetM and M ' defined in
the work of Van Nieuwenhuizen. Such an application
is less straightforward as inverses of operators appear
throughout the various expressions (e.g. , the representa-
tion of s detM), and each of these inverses must be regu-
larized with use of Eqs. (4)-(6). Nevertheless, we have
shown that precisely the same results are found as when
we treat the supermatrix directly.

Some of the models considered above are gauge-theory
models. As in conventional perturbation theory, compu-
tations may be simpler in one gauge than in another. In

f(l —uq)q +u~(q+p) I'+ f'

!
the covariant Honerkamp gauge with a =1, the compu-
tations are as straightforward as in the p6 2, model. For
a arbitrary, however, inverses of operators automatically
occur in all calculations. These are regularized with use
of Eqs. (4)-(6).

We have applied our procedure for computing Green's
functions to the computation of the VVA and AHA
three-point Green's functions in an Abelian model which
contains external vector and axial-vector fields and quan-
tum fermion fields, and is invariant under vector gauge
transformations. We have also applied our computation
to the on-mass-shell Green's function associated with the
decay of the supercurrent into a vector and a spinor in
N=1 super-Yang-Mills theory. Straightforward compu-
tation in these cases leads to expressions which respect
gauge invariance in the vector vertices; consequently, the
anomaly resides in the axial-vector vertex in the one case
and in the supercurrent vertex in the other case, both of
which we have computed.

Explicit calculations establish that the advantages of
operator regularization persist even when applied to
theories normally considered unrenormalizable. For ex-
ample, one-loop calculations in p4 and, more important-
ly, in quantum gravity are uv finite and symmetry
preserving. Operator regularization does not, of course,
cure other pathological problems addicting quantum field
theories, such as the breakdown of unitarity in a four-
fermion theory.

Finally, we note that the dimensionful constant p
that usually occurs in Green's functions can be intro-
duced by a rescaling of t in (6) so that r =p t is dimen-
sionless.
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