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It is shown that the Fokker-Wheeler-Feynman model of a system of massive, charged particles in-
teracting via forces of electromagnetic origin can be rewritten to yield a physically acceptable relativistic
many-particle Lagrangean. Contrary to the postulates of Wheeler and Feynman, the model satisfies
causality and can be generalized to include arbitrary forces. It also allows a simple description of radia-
tion reaction and, as well, may provide the basis for any comparable modeling of other systems.

PACS numbers: 03.20.+i, 03.30.+p, 12.90.+b

Herein, an exact, physically acceptable classical rela-
tivistic Lagrangean is derived for a system of charged,
massive point particles interacting via action-at-a-
distance forces of electromagnetic origin without self-
interactions. This type of modeling of such systems is
considered at the present time for a number of reasons.
First, it is a standard approach, with a long and success-
ful history, to both the classical and quantum descrip-
tions of nonrelativistic systems for which a classical
description exists. However, the search for a similar ap-
proach to relativistic systems is incomplete (e.g., Llo-
sa'). Second, such a modeling should yield a precise
definition of particle-particle and particle-external-field
interactions and hence suffice for these cases. In fact,
our initial interest in this problem arose because calcu-
lated relativistic effects in applied-field phenomena of
many-electron atoms indicated an inadequacy of current
theories (e.g., one-particle? and model? approximations).
Third, it is expected that an action-at-a-distance ap-
proach should complement a field-theoretic approach
(e.g., Llosa,' p. iv, and Sazdjian*) and hence lead to a
fuller understanding of relativistic theories. Also it may
be more straightforwardly applied to many-particle sys-
tems. Fourth, the electromagnetic case is being used as
a prototype for a similar modeling of two-particle sys-
tems (e.g., spinless particles® and quarkonium®-®).
However, no fundamental criteria seem to exist by which
to determine the relativistic particle-particle interactions,
and they are inserted in ad hoc ways. To complete such
approaches it is necessary to determine the requisite
basic properties of such models, and the electromagnetic
problem is a natural first choice. Particular features of
the electromagnetic problem are displayed below that
have a number of implications and that may be useful in
clarifying and unifying some of the basic concepts in
predictive relativistic mechanics (e.g., Llosa! and Bel®)
and other types of modeling (e.g., Sasdjian*!°).

One might think that the electromagnetic interaction

is completely understood; however, this is, in fact, not the
case. The Breit Hamiltonian'' is the most practical
model that currently exists for atomic systems. Howev-
er, in the first relativistic correction to the interparticle
interaction, the particle velocities are replaced by their
Dirac velocities rather than by their momentum depen-
dence. Thus the substitution p— p—(e/c)A cannot be
made and, for applied external fields, terms of the
desired order are missing. Now the Breit Hamiltonian is
derived from the Darwin Lagrangean,!? which in turn is
obtained from the intuitively correct physical model of
the one-particle Lagrangean consisting of the free-
particle relativistic Lagrangean minus the interaction en-
ergy of the particle with the retarded Liénard-Wiechert
fields of any other particles. The interaction is expanded
in its 1/c power series and truncated at the 1/c2 term. It
is known'*! that any attempt at including higher-order
terms runs into difficulties. Simply put, the 1/c? term
cannot be symmetrized with respect to interchange of
particles by the addition of a total time derivative; that
is, a divergence. Following Darwin, we have extended
the expansion to order 1/c'% using the Maple symbolic
algebra system available at the University of Waterloo !’
and have verified that the above difficulty with the 1/¢3
term is also present for each odd-powered term up to this
order. One can only conclude that the initial model em-
ployed by Darwin is incomplete.

The only other existing model for the present problem
is the Fokker-Wheeler-Feynman (FWF) model'®!'7 (see
Cramer'® for a recent review and references). Although
originally formulated as an alternative theory of elec-
tromagnetism and discarded as such, it has all the in-
gredients necessary for the type of model being sought.
However, along with a number of attractive features, it
has, as presented, a number of physically unacceptable
features and, hence, has also not been retained for the
latter. We will show that the FWF model can, in fact,
be recast in a form which is devoid of any difficulties and
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yields a physically acceptable many-particle Lagrangean.
Generally, expressions are written for two particles; how-
ever, the extension to many particles is straightforward.
The attractiveness of the FWF model resides in its ori-
gins. It is derived from a Lorentz-invariant action in-
tegral containing both time reversal and particle symme-
try, and the equations of motion are obtained by the
standard extremal principle. The effective Lagrangean
for particle 1 interacting with particle 2 is given as'®!’

Li=—mc/ni— 5 WVh+Viy), (1)

where m o is particle 1’s rest mass, ¢ is the velocity of
light, =0 —u}/c?) "2 with u,=dr,/dt being the
usual velocity of particle 1, boldface denoting a three-
vector, and

s ~ . =~a
e, = 41f{ipl~Pz - )
eocmyoyi1ps- (Fi —F73)
subject to
c(ty—18)=s%r, —r§l. (3)

In the above, the symbols have their usual meaning; the
tilde designates a four-vector, a=R with sR=+1
signifies that the quantity is evaluated at the retarded
time and yields the interaction of particle 1 with the re-
tarded Liénard-Wiechert field of particle 2, and a=4
with s4= —1 gives the corresponding advanced quanti-
ties. Notice that Eq. (1) is in the correct form'®? to
make the Euler-Lagrange equations of motion properly
Lorentz covariant.

The difficulties arise in interpreting Eq. (1). In spite
of the original action integral being symmetric in particle
interchange, the interaction in Eq. (1) is not?' and,
hence, cannot be used as a two-particle interaction in
this form. The dependence on future times implies a
nonconservation of causality which was simply postulat-
ed away.'®!7 As a result one is faced with the paradox
of “discontinuous” forces, which was again postulated
away. This situation is physically unacceptable in the
desired model.

Kerner?' has almost resolved these difficulties. He has
shown that the 1/c power-series expansion of the interac-
tion in Eq. (1) contains only even powers; hence the
difficulties with the odd-powered terms in the Darwin ap-
proach are nonexistent in the FWF model, and that, in
the power-series form, the interaction can be sym-
metrized by the addition of a divergence. Finally, he has
shown the existence of a generalized Hamiltonian, total
linear momentum, and total angular momentum that are
all constants of the motion. These results are promising;
however, the physical interpretation is lost in the
mathematics. Now a divergence in closed form is ob-
tained by defining

tA
F=%ft VR (e, 4)
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where V§ is defined by Egs. (2) and (3) with the ap-
propriate relabeling. Noting that

dti1 — ngyf’[ﬁr (Fz_f.‘f)]

dt myonlps- 7y —H1’ )
and taking account of the arguments, one finds
dF/di=3 Vi, —VE). (6)
Thus adding Eq. (6) to Eq. (1) yields
Li=—myoc*/ri— 1 Wh+VE). @)

The two Lagrangeans, Egs. (1) and (7), describe the
same system and differ only by a divergence. To decide
which one, if either, is physically meaningful, recall that
it is well known in classical mechanics that, in general,
divergences are arbitrary functions and any attempt at
attributing a physical meaning to them can lead to non-
sensical conclusions. The situation here is analogous.
However, there are no a prior arguments for making a
choice and one must decide which Lagrangean leads to
physical absurdities. Equation (1) does, while Eq. (7)
does not. The interaction in Eq. (7) is symmetric in in-
terchange of the two particles and hence can be taken to
represent a two-particle interaction. It is true that we
must modify, at a relativistic level, our intuitive concept
of the interaction of electromagnetic origin between two
particles, but, once the Darwin approach is rejected, that
is unavoidable. Equation (7) indicates that there must
be an internal self-consistency in the interaction, not that
the future affects the present. Notice that the Euler-
Lagrange equations of motion cannot be used to make a
distinction between the two Lagrangeans because the
divergence, Eq. (6), satisfies the Euler-Lagrange equa-
tions identically. Thus the advanced potential, V,-’}, is
equivalent to the retarded potential, V'}. Since Eq. (7)
depends only on past times, the system is causal. Thus
the FWF theory is in actual fact a predictive relativistic
theory. The implications are rather far reaching. Final-
ly, the paradox of *“‘discontinuous” forces does not occur
and Eq. (7) can be generalized, a necessary property of
any reasonable model, by adding any additional interac-
tions in any physically acceptable way. This completes
the recasting of the FWF model in a form that retains all
of its attributes but none of the absurdities originally at-
tributed to it.

As an example of the simplicity of the present inter-
pretation it is shown that radiation reaction follows
straightforwardly from the equations of motion and their
solutions, a necessary property of such a model. Thus,
the model is restored purely to one of a system of parti-
cles and their interactions. From Eq. (7) the Lagrange-
an for particle 1 interacting with the rest of the Universe
is

Li=—moc’/n=X v+ W=V, &)
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where j is summed over the rest of the Universe, and the
prime means j#1. The first interaction term is the usual
interaction of particle 1 with the retarded field of the rest
of the Universe, as derived from Maxwell’s equations
and used to define the driving fields in any experiment.
The second interaction term is missing from the Darwin
approach; it must arise from the self-consistent coex-
istence of the Universe from all past time to the present
and it must be included for a complete and correct
description of the system. The 1/c power-series expan-
sion of this second interaction yields

Li==mic/n =X Vi+3, ——sury

—df/dt+0/c?), )
where f contains terms of order 1/c?, 1/c3, and 1/c*
The self-consistent interaction is seen to be small, of or-
der 1/¢3; the correction to the above form being of order
1/c¢. The Euler-Lagrange equation of motion from Eq.
(9) to order 1/c? in the self-consistent interaction is

d R~ 24919 ..
E(mloylul)—F Zja‘;;iuj*. (10)

F® is the usual retarded Lorentz force on particle 1 due
to the rest of the Universe. Both terms are instantaneous
as the information has already come from the past and
particle 1 simply responds to it. No information from
the future is involved and there are no response time de-
lays. However, in order to obtain the solution for the
motion of particle 1, we need, in principle, to know the
motions of all of the particles in the Universe, as is in-
herent in such a model. Not only is this impractical, it
would also not correspond to reality because the real
Universe is not described solely by electromagnetic
forces. The simplest approach is to infer the required in-
formation from observation. First, although the Uni-
verse appears to be neutral, this aspect must be used to
define the system and gives no information about the
motions. Second, despite large variations in distribution,
on average, any finite volume of the Universe is also neu-
tral. This we call local charge neutrality and quantify it
by

qufrj=0' (11)
Here the sum over j can be over any volume. Another
interpretation of Eq. (11) is that, on average, any finite
volume of the Universe does not have a net dipole mo-
ment. Any deviations will appear as fluctuations. No-
tice also that Eq. (11) is not a constraint on the system
and, hence, cannot be used in the Lagrangean. Rather,
it describes the present solution (state) of the Universe.
If the Universe were in a different state this term would
be different. Including particle 1 in the sum in Eq. (11),
differentiating thrice with respect to time, and substitut-
ing into Eq. (10) yields the usual radiation reaction force
[e.g., Jackson,'® Eq. (17.8)]. As a matter of interest, the
condition that the Universe be a perfect absorber
[Rohrlich,?? Eq. (7.25)] is satisfied to the same order;

that is to 1/c% This is readily seen from Kerner’s?!??

work.

At this point, the foundations, interpretation, and
properties of a relativistic Lagrangean for a system of
massive, charged particles interacting by forces of elec-
tromagnetic origin have been firmly established. Thus
we have the basis from which to proceed to other calcu-
lations, both classical and quantum mechanical, for
closed systems and systems interacting with external
sources. Although the 1/c power-series expansion of
the present Lagrangean results in an infinite-order La-
grangean and it is not yet known how to quantize such
systems exactly,2>?* work done on the Breit Hamiltonian
indicates that a meaningful approximate quantization
can be achieved. Finally, we now have an acceptable
prototype for other systems.
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