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We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of ele-
ments endowed with a partial order corresponding to the macroscopic relation that defines past and fu-
ture. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the
thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we
speculate brieAy on the quantum dynamics of causal sets, indicating why an appropriate choice of action
can reproduce general relativity in the classical limit.
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By comparison with most other scientific theories,
"quantum gravity" is in a very special, and somewhat
unhappy, situation. In the schematic evolution of Take-
tani and Sakata, ' a physical theory passes through three
stages: an initial stage in which a particular "sub-
stance", or type of matter, presents itself in a charac-
teristic group of phenomena; a second stage in which the
new substance in question is clearly discerned in relation
to the phenomena; and a final stage in which the
comprehensive dynamics characterizing this substance is
understood. In contrast, quantum gravity is forced to
skip virtually the whole of the first stage, and tackle the
second and third stages together, hoping that the result-
ing theory will enable us to recognize with hindsight
what features of already-known physics can provide its
"phenomenology. "

In an attempt to guess what these features are, people
have asked questions such as "Why are there four
space-time dimensions?" "Why is the cosmological con-
stant so small?" "Why is our universe so large?" "Why
are there (nearly massless) fermions?" and "Why are
there no holes in space-time?" and have hoped thereby
to uncover important clues to the nature of the quantum
physics underlying classical space-time. Among such
questions the most suggestive for our purposes is
Riemann's query, "Why is there a spatial metric?"
which, in the light of later developments in physics and

different geometry, one must now amend and augment,
changing "space" to "space-time", and asking in addi-
tion the two supplementary questions: "Why is the
metric of Lorentzian signature?" and "Why does space-
time itself have the topological and differentiable struc-
tures that allow a metric field to be defined on it?"

The beginning of an answer to this trio of Riemannian
questions is suggested by the fact—insufficiently appreci-
ated in our view —that a classical space-time's causal
structure comes very close to determining its entire
geometry. By the causal structure of a space-time, one
means the relation P specifying which events lie to the
future of which other events. Ordinarily, one thinks of a
space-time as a topological manifold M, endowed with a
differentiable structure S, with respect to which a metric
g,b is defined. Then the causal order P is regarded as de-
rived from the light cones of g. However, one can also
go the other way: Given a space-time obeying suitable
smoothness and causality conditions (and of dimen-
sionality & 2), let us retain from all its structure only
the information embodied in the order relation P. Then
we can recover from P not only the topology of M, but
also its differentiable structure, and the conform al
metric, g,b/~ detg) 't". Now a partial ordering is a very
simple thing, and it is natural to guess that in reality g,b

should be derived from P rather than the other way
around. The problem with this is that P lacks the infor-
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mation needed to determine the conformal factor
~detg

~

't". In a manner of speaking, we get from P the
metric, but without its associated measure of length (or
better, volume).

There seems to be no way to overcome this problem
within the context of continuous space-time, but on the
other hand there are many reasons to doubt that space-
time is truly continuous, including of course the infinities
of quantum field theory and the singularities of general
relativity. If instead we postulate that a finite volume of
space-time contains only a (large but) finite number of
elements, then we can —as Riemann suggested—
measure its size by counting. If this is correct, then
when we measure the volume of a region of space-time,
we are merely indirectly counting the number of "point
events" it contains. No attempt to "pack more points
into the same volume" could change their density, be-
cause it would only increase the physical volume of the
region in which they were placed.

We thus arrive at the view that the new "substance"
(or better, structure) underlying space-time is what
Riemann might have called an "ordered discrete mani-

fold, " but we will call a "causal set." In this view

volume is number, and macroscopic causality reAects a
deeper notion of order in terms of which all the "geomet-
rical" structures of space-time must find their ultimate
expression.

What recommends this idea to us is not so much its

simplicity, but the way it is potentially able to address
questions like those quoted above. Indeed it already tells
us that the metric must be Lorentzian, because no other
signature than ( —++. . . +) has the two-napped light
cones from which the continuum's causal order is de-
rived.

The picture of space-time as a causal set is by no
means new, but to our knowledge, previous proposals
along this direction either have remained undeveloped

or, if pursued further, have led to formulations in which
the issues we would like to address here were not dealt
with: How is this picture related to our ordinary one of
space-time as a smooth manifold, and, eventually, will

one be able to recover general relativity in the classical
limit? In trying to deal with these issues, practical
difficulties soon come up, but we will see that it is possi-
ble to formulate some reasonably detailed conjectures,
some of whose proofs will appear elsewhere.

Before proceeding further, let us put the notion of
causal set into mathematically precise language. A par-
tially ordered set (or "poset" for short) is a set C provid-
ed with an order relation, &, which is transitive (i.e.,

x & y & z x & z) and noncircular (i.e. , x & y & x~y is
excluded: no "closed timelike curves"). It is also cus-
tomary to adopt the convention that x & x, in which case
the ordering & is called reflexive. A partial ordering is

locally gnite if every "Alexandroff set" A (x,y ) contains
a finite number of elements, where A (x,y ):= lz

~
x

& z &yj is the intersection of the future of x with the
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past of y. A causal set is then by definition a locally
finite, partially ordered set.

Let us now take up this view that space-time is a
causal set, and try to relate it to the picture of space-
time as a continuum. Suppose that we have an arbitrary
causal set C containing many elements —at least 10'
say —and we want to see which manifold-with-metric, if
any, it looks like at large scales. Then we should seek a
manifold M (with a time-oriented Lorentzian metric g,b

free of closed timelike or null curves), and an embedding
f:C M of the causal set into the manifold, such that
the following conditions are satisfied: (I) The causal re-
lations induced by the embedding agree with those of C
itself, i.e., f(x) E J (f(y)) iff x &y, where J (p) de-
notes the set of points of M to the causal past of p; (2)
the embedded points are distributed uniformly with unit
density; and (3) the characteristic length k over which
the continuous geometry varies appreciably is every-
where much greater than the mean spacing between em-
bedded points. '

In specifying in condition (2) that the points be em-
bedded with unit density we have assumed that the
metric g is expressed in natural units, i.e. , ones in which
f( —g)'t dx directly counts elements of C. Ultimately
the theory (generalized, if necessary, to incorporate
nongravitational matter) should predict atomic radii in
natural units, and then one will be able to say precisely
how many elements of C make up a conventionally
defined space-time volume, such as 1 cm sec. On di-
mensional grounds, one expects this number to be near
the Planck density of 7x10' cm - sec

Let us call an embedding which satisfies the above
three conditions "faithful. " It is clear that an (M, g) in
which we can embed C faithfully need not exist at all (in
fact, it probably almost never exists); but if it does, then
our discussion up to now leads us to expect that it is
essentially unique. In other words, we can expect that
any pair of faithful embeddings, f|..C (Ml, gl), f2.C

(M2, gz), are related by a C-preserving diffeomor-
phism h:M& M2, which is an approximate isometry of
gl to g2. (By C-preserving we mean f2=hof|). A pre-
cise formulation and proof of this statement would estab-
lish rigorously that the continuum approximation is well
defined, and therefore that a causal set has a structure
rich enough to imply all the geometrical properties we
attribute to continuous space-times.

As a start in proving such a statement, we will now
sketch an argument that the space-time dimensionality
must be the same for all faithful embeddings of a given
causal set C. To begin with, let f~ .C (M~, gl) be a.

fixed faithful embedding of dimension n ~, and let
A =A(x, y) be an Alexandroff subset of C, which is
"small" in the sense that its image by f ~

has a linear size
of order unity with respect to g~. Then the correspond-
ing AlexandroA' neighborhood Ai and M~ will also be
small in this sense; whence it must be approximately
isometric to an AlexandroA' neighborhood in ni-dimen-
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sional Minkowski space, since otherwise the geometry in

it would induce length scales incompatible with condition
(3). (Here A~ is the AlexandroA' neighborhood in M~
between f~(x) and f~(y), not the finite set f~[A], of
course. ) Now one can show using condition (2) that,
with great likelihood, some such "small" 2 will have the
property that it cannot be embedded in fewer than n

&
flat

dimensions. But since for any other faithful embedding,

fq, the corresponding neighborhood A2 will also be ap-
proximately flat, we must have n2~ n&, and therefore
n~ =n2 by symmetry.

From the point of view of a continuum (M, g) in

which C is faithfully embedded, the latter resembles a
"random lattice"" obtained by "sprinkling in points"
until Planckian density is reached. If one took such a
picture too seriously, the question might seem to arise of
why we stop sprinkling at a specific density, rather than
continuing to some higher, or even infinitely high, value,
but of course such a question would be meaningless be-
cause M is only an approximation to C, and not vice
versa.

Although we have so far based our notion of continu-
um approximation on embedding a causal set into the
approximating manifold, one might anticipate that
small-scale fluctuations in the causal order will prevent
physically realistic sets C from being embeddable in any
manifold, (M, g). To handle this more general possibili-

ty, it is useful to introduce a notion of coarse graining.
A coarse graining C' of a causal set C will be a subset of
C, endowed with the ordering obtained by our restricting
to the subset the order relation of C. But since we wish

to use coarse graining to obtain a larger-scale view of the
original causal set C, not any subset C' is appropriate.
Rather C' should be "representative" of C, as it would

be, for example, if its elements had been selected ran-
domly from those of C with probability p. Such a coarse
graining can be interpreted as preserving only those
features of C which have characteristic volume scale
larger than l/p. Thus, it can happen that a causal set
which cannot be embedded faithfully in any manifold

may become embeddable when coarse grained. This
could happen, for example, if the original causal set con-
tained diferent regions looking like Kaluza-Klein space-
times with diflerent "internal" dimensionalities, and the
coarse graining were on a scale bigger than that charac-
terizing the internal metrics. Notice in this connection
that, even if C can be faithfully embedded in some mani-
fold, coarse graining with a small enough p can wash
out any small-scale structures which lend C a specific
eAective topology, leaving C' with a simpler eAective to-
pology than C, including perhaps a lower space-time
dimensionality.

We see, then, that the dimensionality of a causal set
can vary with scale in elaborate but, nonetheless, well-
defined ways. For example, a causal set which looks four
dimensional at large scales might, in precisely the same
sense, look eight dimensional at smaller scales. Under a

still lesser degree of coarse graining, it might comprise
three large domains of dimensionalities 10, 11, and 26,
while in itself (i.e., with no coarse graining at all) it
might not even have any meaningful dimensionality. In
the same way, other topological features (holes, handles,
geons, ' "foam, " etc. ) might appear at one degree of
coarse graining, without necessarily being present at ei-
ther larger or smaller scales. This is a kind of behavior
that has often been imagined, but is dif5cult or impossi-
ble to describe with use of only the concepts of manifold
and metric.

If a causal set really does underlie the continuum, then
it will no doubt come into its own in situations where the
continuum description already seems to break down,
such as inside a black hole, in the very early universe, or
in topology-changing processes. It is easy to see that,
here also, causal sets possess the necessary kinematic
flexibility; but no further conclusions can be drawn at the
level of Taketani's "stage 2," on which our reflections so
far have remained. Let us conclude, then, with a few
thoughts on a dynamical (or "stage 3") question: how-
and for what choice of action —can ordinary general re-
lativity be expected to arise in the classical limit~

To suggest an answer is dificult without having first
specified a form of quantum dynamics appropriate to
causal sets. For the present discussion, let us merely as-
sume that a quantum amplitude is defined for every
causal set C, and that the classical limit will result in the
familiar way from the condition of constructive interfer-
ence among the amplitudes of those causal sets contrib-
uting to a given continuum geometry (M, g). Now let us

begin with such a geometry and consider the collection
of causal sets C which can be faithfully embedded in it.
Suppose that the amplitude of a typical such C is "multi-
plicative, " in the sense that it is approximately the prod-
uct of the separate amplitudes of any (still macroscopic)
regions into which C may be divided. In that case the
action (by which we mean of course the logarithm of the
amplitude) must take the form in the continuum approx-
imation of an integral over M of a locally defined scalar
(density). But since the quantum "sum over histories"
washes out the anisotropy associated with any single em-
bedded C, the resulting eA'ective action density can only
depend on the metric g,b itself (in other language, the
result must be "generally covariant"). " Therefore it
can be expanded as

Leff =Lp+L2+L4+. . . ,

where Lo is just a constant (the eAective cosmological
constant), L2 is a multiple of the scalar curvature, L4 is a
sum of curvature-squared terms, etc. But since the ac-
tion itself must have the dimensions of 6, the coefficients
occurring in the term Lqk would be "expected" to be of
the order of Alp~, „,k in ordinary units, and for a continu-
um of n space-time dimensions. Then neglecting the rel-
atively miniscule terms L4+ L6+. . . leaves us with
Lp+ L 2, or precisely the usual general relativity La-
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grangean ~ith cosmological term, Lo.
The reason why Lo does not by the same token dom-

inate L2, rendering it negligible as well, cannot be under-
stood purely from the above considerations, which apply,
mutatis mutandis, in many theories for which Einstein
gravity represents a low-energy approximation to some
more complete dynamics (induced gravity, ' higher
derivative gravity, ' or string theory' ). For us here the
important point is that it seems to be easy to suggest am-
plitudes that have the necessary multiplicativity, and
therefore that can be expected to yield something very
close to general relativity in the classical limit. In anoth-
er place we will propose a specific form for such an am-
plitude, and examine the approximate large-scale action
to which it gives rise. On the basis of the result —and of
a certain interpretation of the quantum sum over his-
tories for gravity —we will then try to derive the small-
ness of the cosmological constant from the efIect on this
sum of order fluctuations of the kind referred to earlier:
fluctuations altering the effective dimensionality or lead-
ing to causal sets for which the notion of effective dimen-
sion does not even make sense.
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