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We calculate the Hohenberg-Kohn-Sham energy response kernel K.(g) exactly for the high-density
electron gas, and thus generalize the classic work of Ma and Brueckner to finite wave vector. The results
are relevant to (1) density-functional theory, where we verify that one of the key assumptions used in the
Langreth-Mehl functional was qualitatively correct and suggest possible improvements; (2) dielectric
response theory, where we exactly calculate the leading correction to the static Lindhard screening func-
tion; and (3) a static attractive 1/r®-like interaction between like-charged point particles— we verify the
recent suggestion of Maggs and Ashcroft that such an interaction exists and calculate its value.

PACS numbers: 71.10.+x

Here we present the results of a calculation of the Ho-
henberg-Kohn-Sham!? energy response kernel K.(q) of
a dense electron gas. We begin with some definitions.
Consider an electron gas of density n(r) given by

n(r)=n0+zq8nqeiq", (1)

where dnq is taken to be small. The change in the
exchange-correlation energy 6E . associated with dng is

SEx=Y,Kx(q)|dngl? ()

thus defining K,.. (We have chosen to follow the
definition of K,. in Ref. 1, which was also used in the
work of Langreth and Perdew,? another commonly used
definition differs by a factor of 2.) This quantity is also
related to the dielectric function e(g) of the electron gas
by

elg)=1—(4re?/qHx(q), (3a)

x(q) =%0(g)/[1 — 2K (g% (g)], (3b)

where Xo(g) is the free-electron density response func-
tion. Approximation of Egs. (3) by setting K. equal to
zero corresponds to the random-phase approximation,
which is exact in the high-density limit; what we do here
is to provide the leading correction.

The g =0 component of K,.(q) corresponds to the so-
called local-density approximation for the energy. It is
already known* to the order of the present calculation,
and is larger than the nonlocal or g0 terms that we cal-
culate here; so it is convenient to make the separation

e’
Ky(q) =K, (0)+—7Z(g)q% (4)
8kE

thus defining the dimensionless quantity Z(g). To the
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order of our calculation K,.(0) is given by

2
K0 = —Z[14+2(1 = 1n2)], (5)
2k¢

where 7, is the usual electron density parameter, and
A =(raokg) 7' =0.521r,/m=(kgr/2kg) >

The perturbation theoretic diagrams that contribute to
X—Xo to leading order in r; have been known for
years,>® and are shown in Fig. 1. They were first evalu-

p+q p+a+k

q*@
9 p+k

(c)

FIG. 1. Diagrams for the leading corrections to X. At high
densities they may be regarded as diagrams for Kx.X§. The

wiggly lines represent random-phase-approximation screened
Coulomb interactions.
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ated to order g2 by Ma and Brueckner,® who proved the
remarkable result that Z(0) was a number independent
of e? in the high-density limit, and when combined with
the result of Sham’ for exchange, one finds that
Z(0)=1.98— 7§ at high densities. We note that any
effects of the recent controversy® about whether the &
coefficient is correct because of long-range interactions
without screening, cancel out of the net Z(0) defined
above. We emphasize that all diagrams in Fig. 1 make
contributions of the same order to Z(g) although the
fluctuation diagram ¢ makes numerically larger contri-
bution to Z(0) as first pointed out by Rasolt and Gel-
dart®; we find here that the same thing happens at finite
g, although diagrams (a) and (b) are now somewhat
more important.

A wave-vector decomposition of these diagrams as a
function of the k going through a Coulomb line was
made for Z(0) by Langreth and Perdew? as an aid to
making an educated prediction as to how Z(g) would
behave. Langreth and Mehl'® parametrized this predic-
tion to produce a density functional, which is reasonably
easily implementable in practice, and which has been ap-
plied with moderate success to atoms, molecules, bulk
metals, and semiconductors. The physics behind these
results, and especially the reason for the great impor-
tance of the fluctuation diagram, Fig. 1(c), in terms of
plasmon exchange, has also been given.'!

Here we evaluate Z(g) exactly at high densities, and
hence generalize Ma and Brueckner’s calculation® to
finite ¢g. It would, of course, be nice to be able to relax
this high-density restriction. In this regard we make the
following comments. First, the anomalously large corre-
lation contribution occurs only at very small g (scaling
with the Fermi-Thomas wave vector kgr), and our re-
sults should be meaningful until the density becomes so
low that this region becomes comparable in size to the
Fermi diameter. This was indeed our experience previ-
ously3 where our results at ;=2 or so were virtually
identical to those at r,=0. It was also found that contri-
butions from higher-order diagrams'? gave considerably
larger corrections than the correction obtained by
evaluating the diagrams of Fig. 1 at metallic densities as
opposed to r;=0. Next, we mention that the diagrams
of Fig. 1 each have nonintegrable divergences as the in-
termediate wave vector k crosses the Fermi diameter®?;
when all the diagrams are summed, these divergences de-
generate into a very rapidly varying but integrable struc-
ture whose strength increases with r,. Because the net
effect of this structure was found to be very weak,> the
amount of analytic and numerical work necessary to in-
tegrate over it was in retrospect way out of proportion to
any benefit gained. We therefore decided in this work to
eliminate the problem by evaluating the diagrams of Fig.
1 at high density.

The procedure for taking the high-density limit of the
diagrams of Fig. 1 is straightforward. First, make the

498

separation
Z(q)=7Z.(g)+Z,(q), (6)

where Z,(g) is the value of Figs. 1(a) and 1(b) evalu-
ated with bare instead of screened Coulomb lines. If
necessary, use Sham’s method’ to resolve any k=0
anomolies, since such anomolies, ? if they exist, must can-
cel out of the sum in Eq. (6), so that we may take Z,(0)
equal to Sham’s value of — F (in the present units). To
calculate Z,(g) we simply scale g and k in the diagrams
in units of kgr (we chose kFT/\/§ in view of our previous
experience) and then expand in powers of this parameter
divided by the Fermi diameter 2kf. This procedure
would fail if it turned out that the main contribution was
not concentrated in a small region in k and g space (of
size ~kFT/\/§) about the origin, but we, in fact, expect
such a concentration at small g, and indeed this is how it
turns out. If it were otherwise it would mean that the
correlation energy associated with a localized distur-
bance was of the same order in e? as the exchange ener-
gy; such a situation could at best be described as coun-
terintuitive. At high densities, and in the region where
Z.(g) makes an important contribution, Z,(g) does not
vary, because there is no possibility for the wave-vector
scale kgt to occur. Therefore over the scale of the plots
shown in this paper, one may simply take Z,(g) to be its
zero g value of — #. For larger ¢’s, it may be taken
from existing calculations.®!> Note that for larger q’s,
Z(g) is dominated by Z,(q).

We now turn to the results for Z.. First, consider the
intermediate quantity z.(g,k) for which the summation
over k in Fig. 1 has not been performed. This corre-
sponds to the wave-vector decomposition of Langreth
and Perdew.*!'* We show curves in Fig. 2 for a variety
of g values, and also the so-called gradient approxima-
tion curve (which corresponds to ¢=0) along with the
Langreth-Mehl'® fit to the gradient approximation
(dashed line). The reader should compare the curves
shown here with Fig. 1(a) of Ref. 3 on which the
Langreth-Mehl approximation to Z, was based. Basical-
ly what was done was to take the dashed curve for k 2 ¢
and zero otherwise. The calculated curves show that this
procedure was qualitatively justified. They also provide
an answer to questions raised about this procedure. '®

Our calculated result for Z.(g) is shown in Fig. 3. As
anticipated the value of Z.(g) falls off sharply from its
q =0 value; the wave-vector scale on which this happens
is @,/vg=kgr/~/3. Thus as anticipated, the bulk of the
contribution to Z.(g) occurs for both k and g within a
very small region about the origin. Referring to Fig. 2,
one sees that by k or q~kFT/\/§, the contribution has
fallen off to small fractions of their original values. We
do not expect substantial deviations from these high-
density results until the size of this region becomes com-
parable with the Fermi diameter, and hence we fully ex-
pect our calculation to be meaningful at metallic densi-
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FIG. 2. Our calculations for the wave-vector decomposition
z:(q,k) of Z.(q). These are shown (solid curves) for various
values of Q, where Q=¢~/3/kpr. The gradient approximation
value is also shown. The dashed line is the fit of Langreth and
Mehl with the gradient curve. The Langreth-Mehl approxima-
tion for the density functional consisted (in part) of cutting off
this dashed curve for k < k., where k. ~gq.

ties r¢~2. As further evidence for this we have com-
pared the curve marked GRAD in Fig. 2 with our earlier
calculation?® at r, =2 and the results were almost identi-
cal.

Also shown for orientation in the dashed curves in Fig.
3 is the fitting function used by Langreth and Mehl!®
(LM),

ZCLM(q)=Zexp(—2kc\/§/ka), (7)

for two different values of the cutoff parameter k. =g
and k. =gq/2. Since in the LM scheme the value of k.
gets inextricably mixed with how g is approximated
through Vn when we extrapolate out of the linear
response regime, one cannot say for sure which value of
q. more nearly corresponds to LM. One can say for
sure, however, that the LM fitting function has the right
qualitative behavior, except at large ¢ where the correct
Z,. falls off more slowly. However, in that region Z is
dominated by Z,. Use of the correct Z, however, rather
than the approximation of Eq. (7) obviously allows one
to improve the density functional, and this will be a sub-
ject of a future paper.
For small g, we find that Z.(q) behaves as

Z.(g)=198+0.77QInQ —1.250+. . ., (8)

where Q =+/3¢/kgr. We found this to be fairly accurate
(within 1%) for Q as large as 1 or so. Equation (8) plus

FIG. 3. Solid curve: The results of our exact calculations.
Dashed curves: Eq. (7) for k=q (LMI1) and for k=gq/2
(LM2). At r,=2, the value of Q corresponding to the Fermi
diameter is about 3.

Fig. 3 should be adequate for most applications of the
response functions (3). A table of more accurate values
will be included in a planned future paper. As men-
tioned earlier we expect the results to be useful at the
higher metallic densities as well in the very high-density
limit where they are rigorous.

One point which deserves emphasis is that Z.(g) falls
away from its zero g value very rapidly, if g is measured
on the more usual scale of 2kf, even at metallic densi-
ties. For example, for =1, Z.(g) is down to about half
its zero g value and when Q =2, it is down to about ¥ of
its zero g value. For reference, the value Q=3 corre-
sponds to g =2k at r, =2. This means in particular that
it is a bad approximation to use the g =0 result® at most
physical g’s.

After the bulk of this work was completed, we learned
of work by Maggs and Ashcroft,'® who on the basis of
calculations involving diagram Fig. 1(c) predicted a
power-law interaction at long range. Such an interac-
tion, in the context of our work would be due to the non-
analytic behavior of Z.(g) near ¢=0 in Fig. 3(c). The
second and third terms in (8) are not analytic functions
of Q2 about the origin. We find therefore!” a tail in real
space for large distances:

sV(r) _ _ 13127
VCoul(r) RS

In(1.1R), (C)]

where 8V (r) is the extra interaction (in addition to the
usual Friedel oscillations) between two point particles
whose normal unscreened Coulomb interaction is
Veou(r) and R =rkgr/~/3. Notice that 8V is attractive
for like charges (and R 1) and scales as r ~¢ times a
slowly varying coefficient. As pointed out previously,!!
the physical origin of the singularity giving rise to this
peculiar behavior, is that plasmons scatter strongly off
slowly varying disturbances whose length scales match
their own (i.e., k Sw,/vF) but weakly off more rapidly
varying disturbances. Plasmons being unscreened can
and in this case do mediate a long-range interaction.
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We have considered here the interaction of nonelec-
tronic particles. It is difficult to see, however, how the
necessary additional vertex corrections to describe the
electron-electron interaction could reduce the range or
change the sign of the interaction of Eq. (9).
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