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Thermal Conductivity in Disordered Interacting-Electron Systems
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We study the heat diffusion and the thermal conductivity of the interacting disordered electron liquid
in the metallic regime close to the metal-insulator transition. The heat-difusion constant provides a
direct measurement of the quasiparticle diffusion constant which scales difI'erently from the charge-
difTusion coefticient. The thermal conductivity scales like the electrical conductivity establishing the va-
lidity of the Wiedemann-I ranz law up to the metal-insulator transition.
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The transport coefticients and thermodynamical sus-
ceptibilities of interacting disordered electrons close to
the metal-insulator transitions have attracted consider-
able attention recently. Analogies with Fermi liquid
have been pointed out, ' and the scaling parameters of
the metal-insulator transition originally introduced by
Finkelstein have been related to the spin susceptibility,
specific heat, and compressibility of the disordered in-
teracting system. ' The transport coefficients, the corre-
sponding susceptibility, and the associated Fermi-liquid
parameters exhibit the remarkable structure

dn
P P

p

D
(dn/dp)/p

'

ct, =D,Z, D, = D
(2)

Z ZQ

with ct~, cr„D„and D~ the charge and spin conductivi-
ties and diAusion constants, respectively. dn/dp and Z
are the charge and spin susceptibilities, and p and Zo are
the corresponding bare noninteracting values.

In a previous Letter we proposed a physical picture of
the metal-insulator transition based on the existence of
quasiparticles in a disordered system. The quasiparticles

are characterized by a density of states z, a singlet and a
triplet short-range scattering amplitude y, =a I,z and
y&

=a I,z where a is the spectral weight of the quasipar-
ticle, and the quasiparticle diAusion constant Dt2=D/z.
If this picture is correct the specific heat at constant
volume should be given by CI =pzT, a relation first sug-
gested by Castellani and DiCastro on the basis of a per-
turbative calculation to lowest order in their disorder and
general arguments. Equations (1) and (2) suggest the
following expression for the heat-diA'usion constant and
thermal conductivity:

tc:ctH =CvDH DH =D/(Cv/Cv) =Dg (3)

where Cv=tr /3pT is the bare noninteracting specific
heat. Equation (3) which relates the quasiparticle dif-
fusion constant to an observable quantity, as well as the
general structure of Eqs. (1)-(3), follows very naturally
if we assume that transport is entirely due to quasiparti-
cles. For this purpose we first discuss a phenomenologi-
cal transport equation for the quasiparticle distribution
n (e„,r). e„ is a label denoting the energy of a single
isolated quasiparticle, and plays the role of k /2m* in

!
the Fermi-liquid theory of clean systems. The energy as
a functional of n (e„,r) is given by

r
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f, is the Landau interaction function which in a strongly disordered system does not depend on angle since at dis-
tances larger than the mean free path only s-wave scattering is important. N (r) is the total density per spin:
N (r) =g„n (e„,r). For long-wavelength disturbances we can write down a kinetic equation for diA'using quasiparti-
cles:

0=t)n /t)t —Dt2V n +(Bn /6e) [—Dt2V l [p +~,6N, ]. (s)
is an external potential which is set equal to zero in the discussion of thermal properties. This equation differs in

form from a transport equation written down first by McMillan. Its meaning is also very diAerent. The quasiparticle
distribution n (e) is a function of the energy of the quasiparticle in isolation and not of the local quasiparticle energy as
in McMillan s theory. A detailed derivation of Eq. (5) will be presented in a longer publication.
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It is straightforward to show that Eqs. (1)—(3) follow
from Eq. (5) with dn/dp and D written in terms of the
Landau parameters in the standard way. In particular,
just as in the clean case the term g,f,BN, is of order
T for a thermal disturbance

Sn = —(Bn/Be) (e p) 8T—/T,

(6)

so that the heat diffusion constant is given by DH =Dg,
without any additional Fermi-liquid corrections.

Relations (3) and (1) are important because they
show that the Wiedemann-Franz law (x/Tcr~ =const)
persists up to the metal-insulator transition in the pres-
ence of interactions. This law, which was shown in the
early sixties to be valid for noninteracting electrons in a
disordered medium, depends only on the Fermi-liquid
nature of the ground state and is independent of the scal-
ing of the Fermi-liquid parameters. The identification
DH =Dg gives us a direct experimental handle on the
quasiparticle diA'usion constant.

In the following we outline a microscopic derivation of
Eq. (3). This derivation validates the more qualitative
Fermi-liquid considerations and illustrates a new tech-
nique that treats correctly the energy vertex in the pres-
ence of disorder. In order to study heat transport we in-
troduce the averaged heat-heat response function

Z (r, r) = —ie(r)([H(r, r), H(O, O)]),

where H is the grand canonical energy density. Its
Fourier transform is expected to have diffusive behavior,

ZH(q ~i~) = CvTDHq /(DHq —ice)

The Kubo formula for the thermal conductivity &,

(7)

1 . . M
x = ——lim lim ImZH(co, q)T co 0& Oq

H(r, r) = —,
' g y (r, r)[i B/Br+Ho(r)] p (r, r),

where Ho(r) = —V /2+ v (r) —p is the single-particle
Hamiltonian. Here v(r) is a Gaussian random potential
with variance (i. (r)v(r')) =6(r r')/2rrroN0, —and p is
the chemical potential. r0 is the scattering time in the
Born approximation and A0 the bare single-particle den-
sity of states per spin. In the Matsubara formalism, by
introduction of the imaginary time r, Eq. (6) is then re-
duced to the following time-ordered product:

and Eq. (7) lead to the relation x. =CvDH
The presence of a two-body interaction term in H

makes a direct calculation of (6) very difficult. This
problem is overcome by expressing H in terms of a more
tractable bilinear form. By using the equation of motion
for the fermion operator y(r, r ) in the Heisenberg repre-
sentation, we can in fact write

XH(r —r', r —r ') = —
—,
' [ —B/Br+Ho(r)] —,

' [ —B/Br'+Ho(r')]g(T, y (r, r) p (r, r) p (r', r') y, (r', r')),„„„«„d

where I =z+, 8'= T."+, r =r, r'=r', and H;„t is the in-

teraction energy per unit volume. The last term in Eq.
(8) is derived by commutation of the time derivative in

H with the time-ordering operator.
The main difficulty in evaluation of Eq. (8) comes

from the terms in which the random potential v explicitly
appearing in Ho outside the T, product is averaged (con-
tracted) with some v coming from the time dependence
of y, y~ inside the T, product. To overcome this diffi-

culty we consider Eq. (8) for a given impurity
configuration. The perturbation theory in interaction is
then formally carried out in terms of the noninteracting
single-particle Green's functions in the exact eigenstate
representation, G(r, r', ie„), which is a solution of the
equation [ie'„—Ho(r ) ]G (r, r ', i e„)=6(r —r '). The ac-
tion of the vertex operator —,

'
[i e„+Hp(l ) ] on the

Green's function representing the line leaving the er]ergy

~(r r') a("—.') [(—H(. ))+ —,
' (H;„,(r))],

density vertex is particularly simple:

—,
'

[i e„+H o (r ) ]G'(r, r ', i e„)
=i e„G(r, r ', i e„)—

—,
' 6(r —r '). (9)

Thus the usual Feynman rule for the correlation function
is modified as follows. At each external vertex, instead
of the operator —,

' [ie„+Ho(r)], we introduce two kinds
of vertices. The first will be denoted by a circle and is as-
signed the value ie„. It represents the first term in Eq.
(9). The second is denoted by a dot with a slash on the
outgoing Green's function and represents the factor—

—,
' 6(r —r') in Eq. (9). The rule is to assign a value

to this vertex and erase the outgoing Green's func-
tion (the line with a slash). Now that the random poten-
tial has been eliminated from the external vertex, we per-

x,(q.~) =x, + + 8 ~ ~

FIG. 1. General structure of XH. All renormalizations are absorbed in the static vertex AH, the amplitude I „and the ladder L.
Single-particle Green's functions are not renormalized.
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FIG. 3. Diagrams for the dynamic energy-energy correla-
tion function. (d) Ladder and (e) amplitude corrections.

FIG. 2. Diagrams for the dynamic energy-energy correla-
tion function. Double lines represent particle-hole diffusion
ladders.

form the usual weak-impurity scattering expansion for
the Green's function and the standard impurity averag-
ing techniques are applicable.

We evaluate Eq. (8) for a Coulomb system to lowest
order in the disorder strength r = I/(2z) NoDo, Do being
the bare value of the diffusion constant, but to all orders
in the scattering amplitudes I „I „which characterize
the strength of the interactions. We confine our pertur-
bative analysis to the leading corrections close to two di-
mensions in the spirit of the lowest-order renormal-
ization-group analysis. ' For simplicity, maximally
crossed ladder graphs will not be considered. ' We ana-
lyze XH in terms of the skeleton graphs'' drawn in Fig.
l. We separate XH into a static part gH' which is nonvan-
ishing as m 0 and a dynamic part 10 which is reduc-
ible with respect to the ladder I, which is the impurity
ladder with no interaction connecting the upper and
lower lines. We recall ' that L takes the form
L = g [ —izro+ Dq + I/z~h] ', where g is the wave-
function renormalization, D =D0+6D is the renormal-
ization diffusion constant, and mph is the phase relaxation
time. The static part EH'=CyT where C~=Cy+BCy
and the previous work has identified BC' with the
correction to z so that the identification Cy =zC~ can be
made to lowest order in t. In order to produce the
answers expected by the Landau theory [Eqs. (3) and

~rt+&n +0 &c (0
which equals —(16m ) 'co upon analytic continuation
and is negligible in the limit co 0. This corresponds to
the argument that the Fermi-liq!tid parameters f, do
not enter the specific heat and the thermal conductivity
since g,f,6n ~ is of order T for Sn„pr douced by a
thermal disturbance. However, while this observation is
essentially correct, the detailed diagrammatic expansion
in t shows that the amplitude insertion is in fact needed
to cancel the mass term rzh' which is present in the
ladder L, so that in the end, neither the mass term ~ph'
nor I appears in the denominator in Eq. (10). The ex-
plicit evaluation of XH to lowest order in t is now
presented. Writing Ct =zC! =Ct +AC!, g= I+6j, D
=Do+ 6D, with 6Cv, 8g, SD evaluated to lowest order in
the disorder, and expanding Eq. (10) to lowest order in
the disorder, we find

(7)], the skeleton expansion must have the form

ZH = (CyT) trOCy Tg AH/( tNz+Dq ),

with the additional requirement that AH =z/g which can
be proved by use of a Ward identity. We have checked
that this agrees with the expansion of ZH to first order in
t and all orders in I . Before presenting the calculation,
we comment on the form of Eq. (10). In the denomina-
tor only z appears, instead of a linear combination of z
and I „which would come from summing skeleton dia-
grams such as the last one in Fig. 1 and all higher-order
ones in I. A naive reason for this is that an amplitude
insertion in the skeleton expansion decouples the energy
sum at the vertices, leading to a factor

ZH = —Ct Tira/( —iro+Doq )+6XH (a+b+c)+SZH (d+e).
6TH (a+b+c) is the value of Figs. 2(a)-2(c) which contain the corrections to the vertex AH. Explicit calculation
shows that it can be expressed in terms of 6CV, and 6g as follows:

6ZH (a+b+c) = —26Ct Tiru/( —ico+Doq )+iruCPT(26'g)/( —iru+Doq ). (12)
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6ZH (d+e) is the value of Figs. 3(d)-3(e) which contain the corrections to the ladder and the amplitude. We have
found that it can be written in the form

6TH (d+e) =[iruT/( —iro+Doq ) JCz[ —iru6C&/CP+6Dq —26j( —iru+Doq )J. (13)

By combination of Eqs. (10)-(13),we find that Eqs. (7)
and (3) are correct to leading order in t Th.us, in the
presence of electron-electron interaction the heat-dif-
fusion constant DH divers from the charge diAusion con-
stant D~ DH/D. ~

—I/z and they will scale diAerently if
z 0 or z ~. Nevertheless, the singular corrections
to the specific heat introduce additional renormalization
to the thermal conductivity. The net result is the validity
of the Wiedemann-Franz law up to the metal-insulator
transition. In fact, from Eqs. (I) and (3) we find
=z /3e Tcr where we used the relations rr=e (Bn/
r)p)Dp=e pD

These ideas can be checked by the simultaneous mea-
surement of the thermal diA'usion constant DH and the
thermal and the electrical conductivities. Since the re-
sults presented above rely only on Fermi-liquid con-
siderations, the consistency of the ratio rr/tc would imply
the validity of Fermi-liquid theory up to the metal-
insulator transition. If in addition we use the results
from the e expansion we predict that DH should remain
finite in the presence of spin-orbit scattering while D~
vanishes as we approach the metal-insulator transition.

In the presence of magnetic impurities both D~ and
DH vanish and so does the ratio D~/DH. In the strong
magnetic held case D~ and DH vanish, but the ratio
should remain finite.

Finally, in the case where no spin-orbit or magnetic
scattering is present, we expect D~ to vanish or to stay
finite while DH should vanish. The ratio D~/DH should
then diverge. We suggest that the analysis of thermal
measurements in the light of this present theory could
provide a clue to the understanding of the dramatic
difference in the critical behavior between compensated
and uncompensated semiconductors.

One of us (C.C.) thanks the Condensed Matter

!
Theory Group at Massachusetts Institute of Technology
for their hospitality. This work was supported by Na-
tional Science Foundation Grant No. DMR-85-21377.

Permanent address: Dipartimento di Fisica, Universita
"La Sapienza, " I-00185, Roma, Italy.

'C. Castellani and C. DiCastro, in Localization and Metal
Insulator Transitions, edited by H. Fritzsche and D. Adler
(Plenum, New York, 1985).

2A. M. Finkelstein, Zh. Eksp. Teor. Fiz. 84, 168 (1983)
[Sov. Phys. JETP 57, 97 (1983)].

3C. Castellani, C. DiCastro, P. A. Lee, and M. Ma, Phys.
Rev. B 30, 527 (1984); C. Castellani, C. DiCastro, P. A. Lee,
M. Ma, S. Sorella, and E. Tabet, Phys. Rev. B 33, 6169
(1986).

4C. Castellani, G. Kotliar, and P. A. Lee, unpublished.
5C. Castellani and C. DiCastro, Phys. Rev. B 34, 5935

(1986).
6W. McMillan, Phys. Rev. B 31, 2750 (1985)
76. V. Chester and A. Thellany, Proc. Phys. Soc. (London)

77, 1005 (1961); for the analysis of the Wiedemann-Franz law

close to the Anderson transition see C. Castellani, C. DiCastro,
and G. Strinati, unpublished.

8Castellani, DiCastro, and Strinati, Ref. 7.
I, and I & can be expressed in terms of the small and large

momentum amplitudes I I and r, , r, =I, —
—,
' r, , r, =r, .

' The presence of maximally crossed diagrams is not expect-
ed to change the critical properties of disordered interacting-
electron systems. A. M. Finkelstein, Z. Phys. B 56, 189 (1984).

' 'A similar analysis of the spin-spin and density-density
correlation function ~as carried out in Ref. 3.

' The ladder also contains an inelastic lifetime as discussed in

C. Castellani, C. DiCastro, G. Kotliar, and P. A. Lee, Phys.
Rev. Lett. 56, 1179 (1986).

480


