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Theory of Hopping Motion of a Heavy Particle Interacting with a Degenerate Electron Gas
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A heavy particle moving by hopping on a lattice is considered. The screening and assisted hopping
due to the electrons result in logarithmic contributions to the scattering amplitude. In the study of a
one-dimensional model, scaling similar to the anisotropic antiferromagnetic Kondo problem is found.
The large-scaled couplings reduce the width of the heavy-particle band essentially. The results obtained
hold also for heavy particles forming a degenerate Fermi gas.

PACS numbers: 66. 10.Cb, 66.30.Fq, 72. 15.Qm, 73.40.Gk

Since the discovery of Anderson's orthogonality catas-
trophe and the realization of the importance of noncom-
mutative couplings between a degenerate electron gas
and other degrees of freedom, considerable interest has
been attracted by problems exhibiting such features.
The orthogonality catastrophe means that the electronic
screening clouds formed around a particle with diAerent
positions are orthogonal. ' Kondo pointed out that in the
Hamiltonian of a particle hopping between two sites and
interacting with an electron gas the terms corresponding
to screening and electron-assisted tunneling do not com-
mute, and it became known that they scale to strong cou-
plings. Recently, Caldeira and Leggett have studied
the interaction of a heavy particle coupled to an environ-
ment described by bosonic variables.

If we consider the momentum dependence of the cou-
pling and the energy density of the excitations in the
heat bath, the marginal case separates the models with
and without infrared divergencies. As regards the appli-
cations most of the models of interest belong to that
marginal case and show "Ohmic behavior. " The two-
site problem with electron-assisted tunneling is one of the
exceptions. The hopping motion of a particle on a lat-
tice and its coupling to bosonic and fermionic ' envi-
ronments have been extensively studied also. In the
latter case the screening results in a reduced hopping
rate but not in renormalization of the screening cou-
pling. '" Kagan and Prokof'ev' emphasized that it is
appropriate to solve the kinetic equation with the re-
duced hopping rate, as long as the coupling is not
enhanced.

The model to be studied is a heavy particle (HP), and
its interaction with electrons includes screening and as-
sisted hopping (see Fig. 1). According to our knowledge
this is the erst noncommutative model on a lattice which
scales to strong coupling. The applications of this prob-
lem may include the motion of hydrogen and muon in
metals and the dynamics of f electrons in heavy-
fermion systems. ' The following treatment is restricted
to logarithmic approximation at low temperature.

The HP moves by hopping motion on a cubic lattice
of dimension d with lattice vectors R =an=a(nit

n2, . . . , nd), where n; (i =1,2, . . . , d) is an integer and
the lattice constant is denoted by a. The annihilation
operator of the HP on site n is a, . The unperturbed
Hamiltonian is

H p =tg an+ttaa+ g ekbir~bga

where t stands for the overlap integral and 8 are the vec-
tors pointing to the neighboring sites (

~
b

~

=1). A con-
duction electron with momentum k and spin o. is created
by the operator bp~ and the related energy is e~.

The screening of the HP by the conduction electrons is
given by the Hamiltonian

Hy = Vg, ata, tt/t(n) V/ (n), (2)

screening

election

exsection assisted hop
I 1

FIG. 1. Typical hopping path on a two-dimensional lattice.
The solid line (dashed) represents the heavy particle (elec-
trons). The solid circle is the screening interaction, and the
double line connecting two sites shown by open circle is the as-
sisted hopping.

where y (n) is the electron field operator taken at site n
which can be expressed by plane-wave annihilation oper-
ators bg as

(n ) ~ —1/2g eiat nb
&

where 0, denotes the volume. Similarly,

~ —1/2y i8. n

where 8 is the dimensionless momentum ( —tr & 0; & tr)
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and N is the number of sites.
The jump of the HP from site n to the neighboring site

n+8 can be considered as a tunneling through a poten-
tial barrier Va. The fluctuations of the electron density
6p in the barrier interact with the HP by a local coupling
V' and that results in an effective barrier V, ]T

= V~
+ V'6'p. The change in the tunneling rate due to Bp is
called assisted tunneling, and it can be expanded in

HU= —,
' Uga, +pa, y (n)y (n),

n, b
(3)

which can be given in momentum representation as

terms of 6p. ' ' For the sake of simplicity, the electron
density fluctuation is taken at the middle of the bound,
n =a+ —,

' 8. The corresponding phenomenological Ham-
iltonian is

HU= Ug Q —+exp[ —
2 i(8'+8") b]act-aebz~-bz exp[i[8' —8"+a(k' —k")].n[.

n e', g"
(4)

The summation over 6 for a fixed value of 8 results in the conservation of momentum. The sum of the interactions
given by Eqs. (2) and (3) can be given as

1

8'+ ak' =8"+ak"

1V+ —Ug cos
2

8'+ 8"
2

a~-a~ b~- b~ (5)

The total Hamiltonian to be treated is H =Ho+ H t.
The appearance of the dependence on 8= —,

' (8'+8") is
the key feature of the present model. In a more ap-
propriate theory the shift of the barrier relative to the
shifts of the two neighboring sites must be considered;
thus y (n) y(n) must be replaced by

y (n)y(n) —
—,
' [yt(n)y(n)+ y (n+b) y(n+b)].

That results in a form factor proportional to sin [(k"
—k') ba/4] in the interaction, which is not essential and
will be disregarded.

In any diagram the electron momentum summation
for momenta parallel to a particular direction r (

~
x

~

=1) can be performed separately. As the infrared be-
havior of a slowly moving HP is studied (UF/ta » 1), at
each vertex the momentum conservation can be approxi-
mated as 8'+r'Q =8"+x'"Q where Q =kFQ. '

A straightforward calculation shows that the first-
order correction to the HP-electron vertex contains a
logarithmic term ln(D/max [T, ru, r] ), where D is the
electron bandwidth cutofI, T is the temperature, co is an
energy variable, and the bandwidth of the HP is propor-
tional to t. The logarithmic term occurs as the two basic
diagrams depicted in Fig. 2 do not cancel each other, in
contrast to the case of simple potential scattering. That
is due to the 0 dependence of the vertex [see Eq. (5)l. In
the present case 0 plays the role of the localized spin in

the Kondo eA'ect. The results are presented for the 1D
case, where x is replaced by p =+ 1 for the right- and
left-going electrons. In the Hamiltonian (5) only the
backscattering of the electron is retained as the normal
forward scattering is irrelevant. The general dimension-
less scattering coupling is denoted by vb(0), which has
the starting form

L'p (0) =pp( V+ U cos0) =
Uy + ub cos0,

where po=(2xtF) is the density of the conduction

electrons at one side of the Fermi surface for one spin
direction, and vb and ub are the dimensionless couplings.
With that vertex for the vertex corrections depicted in

Fig. 2, the intermediate momenta of the HP are
0'~ Qp'. The generated vertex is the anomalous for-
ward scattering tf(0';p'), which is odd both in variables
0' and p'', thus it depends on whether the momenta of
the electron and the HP are parallel or not. In the
lowest order vf(0, p) has the form

K
tl K

+It + + (N; tr)Q-
K K

4+(tc tr )Q-
FIG. 2. The two lowest-order vertex corrections. The ingo-

ing (outgoing) momentum of the HP and the direction of the
ingoing electron momentum are 8' and a' (8" and r"), respec-
tively, and x corresponds to the intermediate state of the elec-
tron. The momenta of the HP in the intermediate states are
diA'erent in these two diagrams.

t'f (0,p ) =p t'f sin 0 sing

for the limit tt, » ~ ut, ~, and then tf tbuq -The co. m-
bination of the backward and the anomalous forward
scatterings in the diagrams shown in Fig. 2 generates
backscattering. The scaling equations in terms of the
electron bandwidth D are given as functions of the scaled
width D' and are obtained by taking the derivatives of
the vertex corrections with respect to D and the results

470



VOLUME 59, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JULY 1987

are

dvf(0, p)/d lnD' = vb (&+pQ) —
vb (f)—pQ),

dvb (0)/d lnD '

= —
2vb (9) [vf(O+ pQ;p) —vf(0 —pQ p))

(6)

(7)

There are two regions in the scaling: (i) where vb(0)
and vf (0,p ) keep their functional form obtained in

lowest order and vb ))
~ ub ~, ~ vf ~; (ii) where their func-

tional forms change and their amplitudes are comparable
and exceed the starting value of vb In r.egion (i) the
right-hand side of Eqs. (6) and (7) can be linearized in

vb and vf and the result is

dvf/d lnD'= 4vbub,

dub/d 1nD ' = —4vb vf sin Q,

with vb =const. These scaling equations are equivalent
to those of the anisotropic antiferromagnetic Kondo
problem with the unrenormalized couplings

~
J,

~
))

~ J»
~

and J~ =0, which can be solved exactly. ' ' The energy
T„characterizing the crossover between the two regions

14

T„=D(u /2 sin'~'Q) ' (10)

In general, the Kondo energy TK reflects the crossover to
the strong-coupling limit. If 4vb sin'~ Q=0.3 —1, then
Ty./T„& 10.

The solution of the scaling equations (6) and (7) is

schematically depicted in Fig. 3 for the two regions of
the scaling (Q =+/2). In the strong-coupling region (ii),
the maximum values of the couplings scale to infinity
and the 0 dependences keep changing. For 0 & 0 & z the
scaled couplings are always positive.

Concerning the applicability of the model presented, a
few remarks must be made. The logarithmic corrections
in the scattering amplitude occur in case of arbitrary di-
mension d. The assumption that there is only a single
heavy fermion or boson particle (or hole) can be
dropped. In 1D a straightforward calculation shows that
the occupation factor for the HP drops out, but the loga-
rithmic behavior remains. Similar behavior is found in
second order independently of the dimensionality. Thus,
the HP considered may have a Fermi surface. In the
case where the HP is an f electron (or d electron), the
s fhybridization -must be taken into account as a first
step, In this case the on-site Coulomb interaction is very
important' but that very likely does not block the renor-
malization described.

Thus, in a large class of HP problems, logarithmic
terms of infrared origin can be expected in the scattering
amplitude, in spite of the fact that the summation of the
leading logarithmic terms is performed only in the case
d=1.

The strength of the assisted hopping U is of the order
of the spontaneous hopping (tunneling) rate if the height

FIG. 3. The couplings of electron backscattering vb(0) and
of anomalous forward scattering vf(0;p) are shown schemati-
cally: initial values by solid line, in regions (i) and (ii) by
dashed and dashed-dotted lines, respectively.

of the potential barriers V~ is comparable with the
screening strength V'. As for charged HP, V'= 1 eV;
therefore that condition is satisfied in most of the cases.
A typical value of the hopping rate is t =10 eV; thus

U/4Vsin '~
Q = 10 —10 (V= 1 eV).

With use of D =10 eV, a reasonable value for the cross-
over energy T„ is obtained if 3Vposin'~ Q —0.5-1.
Thus either the screening strength V or the density of
states po must be large. It is important that in case of
s fhybridization the -HP bandwidth is larger, but that
occurs only as the lower cutofl in the logarithmic in-
tegrals. As a consequence, the system may not scale to
the real strong-coupling limit, and in that case the be-
havior of the system is only modified by consideration of
the coupling U.

If the problem scales to strong coupling, then the large
scaled couplings occur in the scaling equation of the HP
Green's functions, and the right-hand side of that equa-
tion is quadratic in the couplings. The calculation is
similar to the case with only screening. "' ' At zero
temperature and large enough initial coupling, the band-
width D' can be scaled to zero. For smaller couplings
the scaling is terminated when D' becomes comparable
with the renormalized HP bandwidth. The increase of
the couplings has two consequences: (i) The bandwidth
of the HP is narrowed, and thus the coherent motion of
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the HP slows down; (ii) the incoherent contribution due
to the assisted transition is, however, enhanced. The
band narrowing may be responsible for anomalous low-

temperature muon diA'usion observed in several metals. '

Finally, it is worthwhile to mention that in a realistic
model for heavy fermions instead of the assisted f f'-
transition the assisted hopping between d and f levels on

neighboring sites must be considered. Such models are
the subject of further studies.

Summarizing, the present results with assisted hop-

ping strongly suggest that diAerent physical systems with

strong enough screening may scale to strong coupling at
low temperature in a manner similar to the antiferro-
magnetic Kondo problem. The similarity is based on the
fact that the electron screening cloud far from the parti-
cle (Friedel oscillation) depends on the previous path of
the HP, just as the spin polarization of the electrons de-

pends on the history of localized spin in the Kondo prob-
lem. This behavior is diAerent from the one shown by
HP moving in bosonic environment.
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