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The assumption that the distribution of reduced partial-width amplitudes is multivariate Gaussian is
tested by separate measurement of width and amplitude correlations. The data are transformed to a
representation in which the amplitude correlation is zero, and the width correlation is compared directly
with the predicted value of zero. The average width correlation for 2l data sets is r„=—0.01, providing
the most direct and assumption-free verification that the global amplitude distribution is multivariate
Gaussian. The significance of this result for current studies of quantum chaos is discussed.
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The role of quantum chaos in physics and searches for
quantum systems which display chaotic behavior have
been topics of much discussion recently. ' One tech-
nique which has been utilized is to study the quantum
analog of a system whose classical behavior is known to
be chaotic; the canonical example of this approach is
the quantization of Sinai s billiard by Berry. Bohigas,
Giannoni, and Schmit studied the level fluctuations of
the quantum Sinai's billiard and concluded that they
were "fully consistent" with the predictions of the
Gaussian orthogonal ensemble (GOE) of random-matrix
theory. They oflered the conjecture that this relation-
ship between time-reversal- invariant systems whose
classical analogs are chaotic and the GOE is universal.
Additional results for difI'erent systems have thus far
supported this conjecture. This connection between
spectral rigidity in a quantum system and the regular or
chaotic nature of the corresponding classical system has
been investigated by Berry and further discussed by
Wintgen.

The most extensive set of experimental data used for
comparison with GOE predictions has been a collection
of high-quality neutron and proton resonance data. The
fluctuation properties of this ensemble of energy levels
have been studied with a variety of measures '; the
data show both the short-range and long-range order as
well as higher-order correlations required by GOE.

Since nuclear energy levels provide the best experi-
mental data thus far for tests of random-matrix theory,
it is important to test as many predictions of the theory
as possible for these data. In this Letter, we wish to ex-
amine the strength fluctuations of nuclear levels. Under
the assumptions of GOE, reduced widths in a single

If the amplitudes in each channel are Gaussian with zero
mean, ' then

p(r', rb) =p'(r. , rb) (2)

Since this relation depends on joint moments of y and

yy in addition to the moments for each channel, it should
be more sensitive than a test using only the widths in a
single channel.

The only data to test Eq. (2) are from high-resolution
proton inelastic scattering, '" where interference between

channel should obey the Porter-Thomas distribution, ''
and reduced-width amplitudes in multiple channels may
be correlated and should follow a multivariate Gaussian
distribution. '

For reduced widths the Porter- Thomas distribution
seems to describe a variety of neutron' and proton'
resonance data. Since the Porter-Thomas distribution
for reduced widths is equivalent to a Gaussian distribu-
tion for reduced-width amplitudes, agreement of the
Porter- Thomas distribution with experimental data
seemed to verify the Gaussian assumption. However,
Harney's has shown that very large samples (larger than
available) are necessary for a precise test of the Porter-
Thomas distribution. Thus an alternative method of
testing the Gaussian assumption is desired. Because one
cannot measure the absolute signs of the amplitudes, a
test which depends on relative signs appears to be the
most sensitive possible. The linear correlation coefficient
between two sets of data fx;J and fy;J is

g, (x; —(x) )g, (y; —(y ) )
p(x, y) =

[g, (x; —(x)) 'g, (y; —(y)) '] ' '
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coherent channels in a reaction allows the determination
of the relative sign of a pair of amplitudes. Details of
the experiments are given in Ref. 14 and are only sum-
rnarized here. For several even-even targets, angular dis-
tributions have been measured on resonance for inelastic
scattering to the first excited state (I"=2 ) and for the
subsequent deexcitation y ray to the ground state. For a
given resonance, the analysis yields both the magnitudes
and the relative signs of the reduced-width amplitudes in

the inelastic channels (two for p-wave resonances, three
for d-wave resonances). These data provide sufficient in-

formation to determine the correlation coefficients [Eq.
(l)] of both widths and amplitudes for a set of com-
pound nuclear resonances with the same spin and parity;
each pair of channels for a given nucleus thus yields both
an amplitude correlation and a width correlation. These
are the first separate measurements of width and ampli-
tude correlations. A sufficient number of resonances
have been studied to consider a statistical analysis for
three different J values ( —,', —,'+, —,

'+) and four differ-
ent compound nuclei ( Sc, V, 'Mn, Co). Although
there are three decay channels for —,'+ and —,'+ states, one
can consider the channels pairwise without loss of gen-
erality. Surprisingly large correlations are observed be-
tween the inelastic channels; these are presumed to indi-
cate the presence of direct reactions. ' It is the large
values of the measured correlations (typically =0.5)
which make practical a test of Eq. (2).

Some of these data seem to disagree with Eq. (2). At-
tention has focused on understanding the significance
level of these discrepancies and the eAects of experimen-
tal errors. ' Harney' examined the eA'ect of limited
sample size on tests of Eq. (2) by calculating the uncer-
tainty in the ratio r (y„yi, )/r(y„yg) due only to sample
size (here r is the experimental value for the linear corre-
lation coefficient, evaluated with finite averages from the
data rather than ensemble averages as in the definition).
He concluded that the uncertainty due to sample size
alone made a conclusive test impossible v ith the indivi-
dual data sets but that the average ratio for all data
agreed with the expected value of 1 ~

' However, another
test ' with the same approach, but considering the
difference r (y„yb) —r(y„yb) instead of the ratio, con-
cluded that the finite sample size could not explain ob-
served discrepancies and that the averaged data did not
agree with the Gaussian assumption.

Because tests of Eq. (2) with a ratio' and a differ-
ence' lead to diA'erent results, we will bypass this di%-
culty by analyzing the data in a representation where the
amplitude correlation r, is zero (we denote width corre-
lations by the subscript ~ and amplitude correlations by
the subscript a). Therefore, in this "zero" representa-
tion only a single correlation coefficient is obtained for
each pair of channels for a given J in a given nucleus.
If the Gaussian assumption holds, then the value of r, is
also zero.

TABLE I. Values of the width correlations in the zero rep-
resentation.

Compound
nucleus fl f2

Signif.
level

(%)

45SC

49V

5IMn

57Co

3
2
5 +
2

3
2
3 +
2

3
2
5+
2

3+
2

5 +
2

37
53

70
30

45

24
38

Ta

fb
3'a

ga

fb
Pa

P'a

fb
Pa

fa
fa
fb
fa
fa
fb
fa
ga

fb

fc
fc
fb

fc
fc
Pb

jc
fc
Pb

fb
jVc

fb

fc
fc
fb

jc
jc

—0.13 0. 19
—0.08 0.20

0.21 0. 12
0.01 0. ] 6
0.52 0.22

—0. 14 0. 16
0.33 0.21

—0.09 0. 10
—0.24 0.07

0.42 0. 18
—0.04 0. 10
—0. 13 0.20
—0.05 0.07

0.20 0.33
0.03 0.23
0.31 0.30
0.11 0.14

—0.13 0.08
0.01 0.08
0.45 0. 1 3

0.07 0. 10

78
70
95
49
99.5
82
89
95
99.0
96
69
75
83
64
66
76
81
95
56

& 99.9
79

The procedure for changing representations has been
discussed in Ref. 14. The same orthogonal transforma-
tion is applied to the amplitudes for each resonance in a
data set. For —,

' resonances there are two amplitudes,
and the general orthogonal transformation depends on a
single rotation angle 0; the specific representation de-
pends on the value of 0. For 1=2 resonances, which
have three amplitudes, the general transformation is de-
scribed by Euler angles ap) and involves a 3X3 matrix.
Orthogonal transformations preserve the distributions in

the sense that if the original amplitudes are Gaussian,
the transformed amplitudes are also. We choose values
of 9 in the 2X2 case and apy in the 3X3 case such that
for each data set, the amplitude correlations are all zero
(simultaneously for the three pairwise correlations in the
three-dimensional cases). The set of correlation coefTi-
cients for the resulting widths is unique. Although the
labels a, b, c on the amplitudes do not have a definite
meaning unless the exact transformation is specified (the
transformed amplitudes can be permuted by diferent
choices of apy), we maintain the labels as a matter of
bookkeeping.

The transformation to the zero representation was per-
formed for six data sets involving d-wave resonances and
three data sets involving p-wave resonances, yielding a
total of 21 width correlations. The results are listed in
Table I. In order to estimate the standard deviation o
for a given width correlation, we applied the bootstrap
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method ' to the widths in the zero representation. The
problem is, given n data points and their linear correla-
tion coeScient r, to determine the significance of r. The
bootstrap method does this by sampling with replace-
ment n data points from the original data set; any one
datum point may be in the sample more than once or not
at all. The correlation coeScient is then determined for
this sample. The sampling procedure is repeated many
times, and the resulting set of correlation coefficients is
used as an approximation to the true distribution.
Confidence levels can then be determined. This method
does not assume any explicit distribution for the data
and, therefore, seems ideally suited for the present
analysis, in which the amplitude distribution is being
tested.

We generated 25000 samples for our bootstrap distri-
butions; a typical distribution is shown in Fig. 1. Follow-
ing the suggestion of Efron, ' we take the value of o to
be 2 the width of the central 68% of the distribution.
We also list in Table I the significance level of each
correlation as determined with the bootstrap; for a posi-
tive (negative) correlation coefficient, the significance
level quoted is the fraction of correlations in the
bootstrap sample which are positive (negative). We use
the bootstrap to evaluate significance because it not only
gives a direct measure of the eAect of sample size but
also reflects the experimental data much more than other
methods. Three of the individual data sets disagree with

the Gaussian assumption at a significance level of 99%
and three more at the 95% level.

The central question is whether the combined data
agree with the Gaussian assumption. In order to average
the 21 diAerent width correlations, one must choose ap-

propriate weighting factors. Since the bootstrap method
is a numerical and not an analytical technique, it is not
clear what the weighting factor should be. Following the
result of the usual analytic methods, we use the inverse
variance I/cr; (the results are essentially the same for
I/cr; ). The average width correlation is then

Combining the data in Table I yields r„=—0.01. To
determine the significance of this value, we again apply a
bootstrap, this time to r„, and obtain the distribution
shown in Fig. 2. The significance level is only 56% (cr
=0.04), and the result is clearly consistent with p„=0.

To summarize, for Gaussian distributions the width
and amplitude correlations are simply related: p„=p, .
Our data provide the only independent measurements of
width and amplitude correlations. Previous analyses of
these data considered the ratio r, /r or the difference
r, —r . The transformation of the data to a representa-
tion in which r, =0 leads to a value of r„which can be
compared directly with the predicted value of 0. The
r„s for 21 individual data sets are combined with a
weighting of 1/a;, where o is one-half the width of the
central 68% of the bootstrap distribution for each width
correlation. The result is r„=—0.01 ~0.04. This pro-
vides the most direct and assumption-free confirmation
that the reduced width amplitude distribution is mul-
tivariate Gaussian, as predicted by GOE, and further
strengthens the proposed connection between random-
matrix theory and quantum chaos.
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FIG. 1. Sample bootstrap probability distribution for a
width correlation in the zero representation. The vertical ar-
row marks the value of the experimental correlation, while the
horizontal one marks the central 68% of the distribution.

FIG. 2. Bootstrap distribution for the average width correla-
tion determined from the 21 values of r„. The value of r„ is
—0.01.
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