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We have carried out a numerical simulation in SU(3) lattice gauge theory with four flavors of low-
mass staggered fermions at zero baryon-number density in the vicinity of the high-temperature phase
transition on 6x 103 and 6 x102x 20 lattices. Static screening masses (static susceptibilities) were mea-
sured in several color-singlet channels with quark valence ¢ggq and gqq. Clear evidence for a hadronic
screening spectrum is found, suggesting the presence of hadronic plasma modes. The spectral multiplets,
extrapolated to zero quark mass, are consistent with a restoration of the SU(N)®SU(N) chiral

symmetry.
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At high temperatures and zero baryon-number densi-
ty, hadronic matter is expected to undergo a phase
change to a new form of matter called the quark plasma.
Recently various laboratories have mounted efforts to
produce quark matter in high-energy heavy-ion colli-
sions.! It is therefore increasingly important to develop
a solid theoretical understanding of the expected struc-
ture and properties of this novel phase, not merely for its
intrinsic theoretical interest, but to suggest and criticize
possible experimental signals for plasma formation.

A popular model of the plasma is based upon a naive
interpretation of the consequences of asymptotic freedom
that obtains at extremely high temperatures. According
to this “deconfinement folklore,” the quark plasma is to
be regarded as a gas of weakly interacting quarks and
gluons. However, it is known that long-range, nonper-
turbative effects disrupt this simple picture even at the
highest temperatures.>3 Knowing the long-range struc-
ture of this plasma is tantamount to knowing its large-
scale composition. A great deal depends upon these de-
grees of freedom: the equation of state, the rate of en-
tropy production upon a phase change, plasma transport
properties, multiplicities and flavors of low-energy parti-
cles, and production rates of low-energy lepton pairs, to
name a few items.

In an effort to develop a more rigorous nonperturba-
tive picture of the structure of the plasma, we have car-
ried out a numerical simulation of quantum chromo-
dynamics on small lattices [6x10% and 6x102x20] at
temperatures near the phase transition. Fermions are in-
corporated in the staggered scheme® with a modification
of the Illinois hybrid microcanonical algorithm.> We
measured several hadron propagators at large spacelike
separation. Although our methods are well known in
studies of the zero-temperature hadron mass spectrum,®
to our knowledge, ours is the first deliberate application
of these methods to the quark plasma. The inspiration

for the present work comes from conjectures concerning
the confining properties of the quark plasma and similar
work7on glueball analog modes of the pure gluon plas-
ma.>

With N flavors of massless quarks, QCD is symmetric
under the chiral SU(N)®SUN)®U(1)®U(1) group.
The U(1) ® U(1) chiral symmetry is explicitly broken by
the gauge anomaly, and the SU(N) ® SU(N) symmetry
is spontaneously broken at zero temperature, resulting in
the appearance of a massless Goldstone boson. A
modified version of the Goldstone theorem applies at
finite temperature as well, with the Goldstone boson ap-
pearing as a zero-frequency excitation at zero wave num-
ber. It has been known for some time that there must be
a high-temperature phase transition in QCD that re-
stores some part of the chiral symmetry. The restoration
of the SU(N) ® SU(N) symmetry is signaled by a van-
ishing of the order parameter (gg). This effect is found
in numerical simulations.®® A restoration of this sym-
metry would allow the plasma-mode vestige of the Gold-
stone boson, should it survive, to have a nonzero gap fre-
quency, and would require the formation of chiral multi-
plets of states related by the larger symmetry. The
chiral multiplet structure is determined explicitly by the
valence-quark assignments for the various states. Thus,
for example, the plasma modes 7 and o must fall in a
singlet multiplet, the @ and p in a multiplet, and the nu-
cleon must either be parity doubled or have zero gap fre-
quency.

To find the plasma chiral multiplets, should they exist,
requires a study of the low-lying modes of excitation.
They are defined by correlations of local operators
A(x,t) and B(x,1):

Sap(x,1) =(4(x,1)B(0,0)) —(4(0,0)XB(0,0)), (1)

where the average is taken over the Gibbs ensemble at
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temperature 7. Unfortunately, lattice gauge theory has
not been formulated in such a way that numerical simu-
lations can measure finite-temperature, real-time re-
sponse. Nonetheless, it is possible through numerical
simulation to obtain indirect information about the exci-
tations by a study of the static screening lengths, i.e.,
correlations between static operators at large distances
and high temperatures:

Sap(z) =(4(z)B(0)) —(A4(0))B(0)), (2)

where the time and transverse-plane averages are given
by

B L L _;
=N Alx,y,z, —it)
A(z) Llemj;) drf_de f_Ldy 4125 .

(3)

The large-distance behavior of this correlation,

SAB(z)| ~ bexpl—u(T)|z]|], 4
2] — o
gives a screening ‘““mass’ or inverse screening length
u(T).

How is the screening phenomenon related to a real-
time excitation? If we consider the dispersion relation of
one of the normal modes of the plasma, given by
f(k,w,T) =0, where k = | k| and w are the real momen-
tum and real frequency of the real-time response (1),
then the screening mass obtained in (4) is found by ana-
lytic continuation to be a solution to f(+iu(7),0,7) =0
for the longest-range mode in the channel determined by
the quantum numbers of the operators A4 and B.® Just as
the plasmon in an ordinary electrodynamic plasma is as-
sociated with the phenomenon of Debye screening, so we
expect low-lying excitations of the plasma to be related
to the screening effects that we measure.

It is easily shown that when a symmetry is not spon-
taneously broken, i.e., the Gibbs ensemble is invariant
under the symmetry transformation, hadron channels re-
lated by symmetry must have identical spectral proper-
ties, and, in particular, the screening masses must reveal
the multiplet structure.

In this Letter we report the highlights of our results
without giving details of the numerical analysis. A com-
plete report is currently in preparation.'® What follows
describes our analysis briefly, and gives some of our re-
sults, and then we summarize our conclusions.

Simulations were carried out at three values of the
bare-quark mass, namely m =0.05, 0.075, and 0.10 in
lattice units, at each of three values of the gauge cou-
pling adjacent to the phase transition, namely 8=>5.10,
5.175, and 5.25. In the chiral limit the first value of B is
expected to lie in the low-temperature (7 < T,) phase,
and the last two, in the high-temperature (7> T,)
phase. The bulk of the measurements were carried out
on the smaller lattice, namely 6 X 103.

Screening masses were measured for a variety of

400

color-singlet channels with the quantum numbers of the
7, o, p, by, and a; mesons and both parity states of the
lowest-lying baryon. These masses were measured by
our calculating quark propagators on lattices obtained by
doubling of the gauge-field configuration in a spatial
direction.

A careful analysis is required to determine the sys-
tematic and statistical errors in the screening masses.
Systematic errors arise from finite-size effects, a neglect
of higher spectral components, and a variety of correla-
tions. '°

Shown in Fig. 1 is a sample plot of the static correla-
tion (2) for the z-meson channel in the high-temperature
phase. The fit is by the form

S:(z)=bexp(—uz)+bexpl—pu(L—2)]1, (5)

where L is the length of the lattice in the z direction. In
this case the fit begins at z=4 and runs to the largest
value of z, so as to minimize the effect of higher spectral
components. The fit to the data running to z =20 gives a
screening mass of 0.765 with a 22 of 29 for fifteen de-
grees of freedom. The fit to the data from the 6x10°
lattice alone with a far larger data sample gives a screen-
ing mass of 0.754 0.003 with x2=20 for five degrees of
freedom in the lattice units. (In this and other channels,
only values from the smaller lattice are used in the extra-
polation to the chiral limit.)

Thus the static correlation shows a remarkably clean
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FIG. 1. The static correlation (2) in the pion channel, aver-
aged over x and y, as a function of the separation z in the
high-temperature phase. The points are from the numerical
simulation at =5.25 and quark mass m =0.05 in lattice units.
The errors are smaller than the symbol sizes.
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fit to a single spectral component over six decades. If
there were a gg component in this channel it would have
a continuum threshold screening mass of at least twice
the lowest fermion Matsubara frequency, namely 2zT.
In the present lattice units 7= ¢, and so this threshold
corresponds to a screening mass higher than 1. Since the
pionic spectral component seen in Fig. 1 is obviously of a
considerably lower screening mass, it cannot be due to
such a quark continuum. However, we cannot rule out
the possibility that such a continuum occurs in addition
to the pionic mode as a higher spectral component.

Other channels were analyzed in a similar way. The
fitting functions for the other channels include oscillating
terms according to the requirements of the staggered-
fermion scheme.'! Figure 2 plots the results for the =
and o mesons at $=5.25 as a function of bare-quark
mass. The data are consistent with the expected degen-
eracy in the chiral limit. The data are also consistent
with the conclusion that the pionic mode is not a Gold-
stone boson for T > T..

Results for other hadronic channels at the three values
of B were similarly extrapolated to zero quark mass.
Where statistically allowed, the intercepts of the expect-
ed multiplets were equated. Results for extrapolations to
the chiral limit of all of the channels are collected in Fig.
3. The shaded region in this figure indicates the possible
location of the phase transition in the chiral limit.%'2 It
is evident that the p and a, fall into the expected multi-
plets above the phase transition and that the lowest-lying
baryonic mode chooses parity doubling, instead of a zero
mass. We also find some indication in the 8 =5.25 data
that the two helicity states of the vector/axial-vector
meson are split.

Our results are consistent with a restoration of an
SU(N)®SU(N) chiral symmetry. In particular, we find
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FIG. 2. Screening masses for the = and o modes in the
high-temperature phase (8=5.25) as functions of the bare
quark mass. All masses are in lattice units. The curves show a
linear extrapolation of the n and quadratic extrapolation of the
o screening masses to a common intercept in the chiral limit.

good numerical evidence in the chiral limit of our model
(1) that there is a cleanly identifiable pion plasma mode
in the high-temperature phase; (2) that the expected #-o
and p-a, multiplets occur in the plasma; and finally (3)
that there are parity-doubled baryon plasma modes with
finite screening length for 7> T..

A partial restoration of the U(1) axial symmetry, as-
sociated with the diminution of the gauge anomaly,
would require a further parity doubling of the 7-o multi-
plet.!3 However, we have not examined the relevant
channels, and so cannot draw any conclusions regarding
the fate of the U(1) symmetry.

Our results strongly suggest the existence of hadronic
modes in the plasma screening spectrum. Whether these
modes are also important as real-time excitations of the
plasma is an urgent question that will probably not be
answered soon by lattice gauge theory. Nonetheless,
their appearance in the screening spectrum deals a seri-
ous blow to the naive deconfinement picture and requires
a reconsideration of several of its predictions of the ex-
perimental plasma signature.
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FIG. 3. Screening masses, as extrapolated to the chiral lim-
it, for the n, o, p, and a; meson plasma modes, and the lowest
even-parity (/V+) and odd-parity (/V-) baryon plasma modes,
plotted as functions of the gauge coupling B, expressed in units
of the temperature. An increase in B corresponds to an in-
crease in temperature. The shaded region indicates the possi-
ble location of the phase transition. The notation O and 1 be-
side the highest-temperature vector/axial-vector meson mass
indicates the helicity assignment.

401



VOLUME 59, NUMBER 4

PHYSICAL REVIEW LETTERS

27 JULY 1987

computer Consortium. We would like to thank the San
Diego Supercomputer Center and the Illinois National
Center for Supercomputer Applications for their assis-
tance and access to the Cray computers at these centers.
One of us (C.D.) thanks Al Mueller, Doug Toussaint,
Yong Shi Wu, Tom DeGrand, and Paul MacKenzie for
helpful comments and suggestions.

IFor a recent conference proceedings, see Proceedings of the
Fifth International Conference on Ultrarelativistic Nucleus-
Nucleus Collisions: Asilomar Conference Center, 13-17 April
1986, edited by L. S. Schroeder and M. Gyulassy, Nucl. Phys.
A461 (1987). For a review of QCD calculations, see H. Satz,
Annu. Rev. Nucl. Part. Sci. 35, 245 (1985).

2D. J. Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod.
Phys. 53, 43 (1981); K. Kajantie and J. Kapusta, Ann. Phys.
(N.Y.) 160, 477 (1985); T. Appelquist and R. Pisarski, Phys.
Rev. D 23, 2305 (1981); S. Nadkharni, Phys. Rev. D 27, 917
(1983); J. Polonyi and H. Wyld, University of Illinois, Urbana,
Report No. ILL-TH-85-23, 1985 (unpublished), and Mas-
sachusetts Institute of Technology Center for Theoretical
Physics Report No. 1458, 1987 (unpublished); U. Heinz,

402

K. Kajantie, and T. Toimela, unpublished; T. H. Hansson and
I. Zahed, unpublished.

3C. E. DeTar, Phys. Rev. D 32, 276 (1985).

4J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

5J. Polényi and H. W. Wyld, Phys. Rev. Lett. 51, 2257
(1983); S. Duane and J. B. Kogut, Phys. Rev. Lett. 55, 2774
(1985); J. B. Kogut, Nucl. Phys. B270 [FS16l, 169 (1986).

6H. Hamber and G. Parisi, Phys. Rev. D 27, 208 (1983);
J. P. Gilchrist, H. Schneider, G. Scheirholz, and M. Teper,
Phys. Lett. 136B, 87 (1984); M. Fukugita, S. Ohta, Y. Oyana-
gi, and A. Ukawa, Japan National Laboratory for High Energy
Physics Report No. KEK-TH 150, 1987 (to be published).

7T. A. DeGrand and C. E. DeTar, Phys. Rev. D 34, 2469
(1986).

8J. B. Kogut and D. K. Sinclair, University of Illinois, Ur-
bana, Report No. ILL-TH-86-46, 1986 (to be published).

M. Fukugita and A. Ukawa, Phys. Rev. Lett. 57, 503
(1986); R. Gupta et al., Phys. Rev. Lett. 57, 2621 (1986);
S. A. Gottleib et al., unpublished.

10C. DeTar and J. Kogut, to be published.

ITH. Kluberg-Stern, A. Morel, O. Napoly, and B. Petersson,
Nucl. Phys. B220, 447 (1983); J. Kogut et al., Nucl. Phys.
B225 [FS9I, 326 (1983).

I12E. V. E. Kovacs, D. K. Sinclair, and J. B. Kogut, Phys. Rev.
Lett. 58, 751 (1987).

BR. Pisarski and F. Wilczek, Phys. Rev. D 29, 338 (1984).



