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Discriminating Technicolor Theories through Flavor-Changing Neutral Currents:
Slowly Varying or Fixed Coupling Constants?
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On the basis of the analytical study of the ladder Schwinger-Dyson equation of the technifermion
self-energy, we find crucial constraints on the running coupling constants in technicolor theories for the
flavor-changing neutral currents to be dynamically suppressed. It is unlikely that the slowly varying cou-
pling constants in the asymptotically free technicolor theory can solve the flavor-changing neutral-
current problem. Fixed-point theories may be the only viable possibility.
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The flavor-changing neutral-current (FCNC) problem
has long been a fatal disease to technicolor (TC)
theories. ' However, a novel solution to this problem has
recently been proposed by two of the authors and Matu-
moto in the scale-invariant TC model in which the
dynamical mass of the technifermion, X(p), is given by
the spontaneous-chiral-symmetry-breaking solution of
the ladder Schwinger-Dyson (SD) equation: Z(p) in the
ladder SD equation asymptotically behaves as

which is communicated through extended TC (ETC) or
preonic gauge interactions down to the ordinary fermion
(quarks/leptons) mass mf on the order of

mf ATC/Ag, (2)

m pNGB (1/As ) (AsATc ) /ATc O(ATc ). (3)

It should be noted that this "dynamical suppression
mechanism" is entirely free of fine tuning. Actually, an

where ATg and A~ stand for scale parameters character-
izing the TC and the ETC (or subcolor) gauge theories,
respectively.

In order that mf=10 MeV for ATC= —,
' TeV, Ag

should be As =10 TeV, thus yielding FCNC O(OC/As)
=5X10 TeV (Oc is the Cabibbo angle) in accord
with the present experimental limit ( S X10 TeV
Equation (2) should be compared with the conventional
result, ' mf=ATc/As, in the usual asymptotically free
TC theories in which the asymptotic form of Z(p) is
given by X(p) —ATC/p up to logarithms. Moreover, Eq.
(1) simultaneously remedies another syndrome, the light
pseudo Nambu-Goldstone bosons (PNGB), by raising
their masses rnpNGg to the order of

asymptotically nonfree TC theory, the model of Ref. 2,
was shown, through Miransky's renormalization pro-
cedure, to have a nontrivial ultraviolet fixed point with a
large anomalous dimension y =1.

The Appelquist, Karabali, and Wijewardhana made
an attempt to fit in the above suppression mechanism,
Eq. (1), with the asymptotically free TC theories, now in
the framework of the "modified" ladder SD equation
with the fixed coupling constant simply replaced by a
running coupling constant, especially by a slowly varying
coupling constant. Suppression of FCNC's in the same
framework was first considered numerically by Holdom
some time ago.

Now the question is this: Given the (modified) ladder
SD equation, can the FCNC's distinguish between the
above two conceptually difI'erent TC theories, the fixed-
point theory (FPT) of Ref. 2 and the asymptotically free
theory (AFT) with slowly varying coupling constant of
Refs. S and 6?

In this Letter, we shall analytically investigate the
solution of the modified ladder SD equation and find on
rather general grounds severe constraints on the running
coupling constants for the FCNC's to be su%ciently
suppressed. %e first present a formula for the fermion
mass mf which, remarkably enough, is determined by
the behavior of Z(p) and the TC coupling constant a(p)
solely at p =As, their behavior for p (As (as well as
p )As ) being totally irrelevant. Then we find that
AFT, however slowly the coupling might be varied, does
not yield enough suppression factor unless at p=A~ we
abandon the asymptotic form, Z(p) —p (lnp )"
(2 )0), very characteristic of the "asymptotically free"
theories. Thus FCNC's require almost fixed coupling
constants ove~ lhe whole region relevant to mf in favor
of the FPT of Ref. 2.
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mf = (1/2As ) (FF),
/v

/V r P~ g( ){FF)=—y {0~F-F,~0) =
2/r "0 p +Z(p)2

dy
/V

I

~s yg(y)
4/r ~ 0 y+Z(y)

(4)

(5)

where N is the number of technifermions F; communi-
cating to the mass of the ordinary fermion f X(p) in. (5)
is required to be the solution of the modified ladder SD
equation which, in Euclidean space, takes the form in

Landau gauge

X(x) t" yZ(y) t'" X(y)Z(y)
Z x dy 2+ dyy+ Z(y) " y+ X(y)

Let us start with the formula for mf in the ETC (or
technicolored preon) models '.

G+ [ ——+ (A —1)/2t]G =0, (9)

where G=t'/ exp( —,
' t)Z and G=dG/dt Solut. ions to

(9) are the Whittaker functions, W~/2 —~/2 ~/2(t) and
Mz/z &/2 &/2(t), which correspond to the spontaneous
and the explicit chiral-symmetry breakings, respectively.
%e may write our spontaneous-breaking solution as

( )
—(t —2g)g t A/2 —I/2, I/2 (t)

2 p =Z„e
2A W~/2 —1/2 1/2(2A)

'

constant at p =p where the chiral-symmetry breaking
takes place.

By virtue of (8), we are only interested in the asymp-
totic behavior of Z(p), in which case [p &&Z(p)] Eq. (6),
with A. =A/2t [t =s+2/ba„=s+2A, s =in(x//t ), and
A—:3c2(F)/trb], is converted into a linearized differential
equation (Whittaker's equation)

/V x'Z'(x)
Pl'f =

3c2(F) tr P(x) —2a(x)

where we noted that

X'(x) = [3c2(F)/4tr] a'(x) = [3c2(F)/8tt]P(x)/x.

(8)

Equation (8) is an amazing formula which expresses
mf in terms of the behavior of Z(p) and a(p) only at the
point p =A~. Our formula is the direct consequence of
the fact that Z(p) is precisely the solution to the
modified SD Eq. (6) and enables us to evaluate mf
without recourse to how the running coupling constants
are varied for p & A~. This is sharply contrasted to the
numerical analysis of Ref. 5 in which the "slowly vary-
ing" property of the coupling constant was considered
significant in the relatively low-momentum region,

Z (0) & p & Z(0)exp(1/ba„+ ca„') (&As,

with a„=—a(p) =a, =tr/3c2(F) (Ref. 8) the coupling

where

X(p ):—[3c2(F)/16/r ]g(p) = [3cq(F)/4/t] a(p)

with a(p) the running coupling constant such that

p Ba(p)/Bp —=P(p) = ba(p) ' ——ca(p) '+. . .

and c2(F) the quadratic Casimir for the technifermion
representation F, and use has been made of an approxi-
mation

x((p —q) ') =x(p') 0(p ' —
q ') +&(q ') e(q' —p ').

Differentiating (6), we obtain

yZ(y) Z'(x)
(7)

y+ Z(y) ' k(x)/x] ' '

which is substituted into (5) and (4), finally yielding a
simple formula for mf.

(p) = (p/ Jx )Zp (12)

which again is normalized as Z" (p) =X„=Z„.'
%'e now come to the central problem of this Letter,

the evaluation of mf through our formula (8) in the
AFT with slowly varying couplings ' in comparison with
FPT. 2 The substitution of (11) and (12) into (8) yields
the ratio

m"" /mj' =(p/A )R, (13)

~here R essentially comes from the logarithmic factor in

(»);
R =(A/2)t" '[2ts —(A —2)/2A][-,' +At ]

where Z„=Z(p). Precisely speaking, this normalization
is subject to a slight change due mainly to the nonlineari-
ty at p=p, which, however, does not significantly aAect
our conclusion. To be definite in numerical estimate, we
take a parameter set similar to Ref. 5: X(0)
=Z(p) =p =350 GeV and As=350 TeV.

Now, in (9) the effects of the running coupling con-
stant are only appreciable, through t =in(x/p )+2A,
for values of x such that in(x/p ) & 2A, i.e. , A & 7 for

p =As. The asymptotic behavior of Z(p) in this case '

is obtained from (10) in the limit' t

X AFT(p)

gAFT(tt 2/x ) [I + (I/2A ) ln(x/p 2) ] A/2 —
I

which is also normalized as X " (p) =Z„
For A))7, on the other hand, Eq. (9) goes over to

G —(s/8A)G=O as p=As (s=14), which is nothing
but the case for the fixed point theory, but in the "weak
coupling phase" (k & l, = —,

' ) '; G —( —,
' —X)G =0 (the

limit A ~ corresponds to k X, —0). In fact, as
~ with x fixed, the asymptotic form of (10) goes

over to that in the FPT of Ref. 2, '
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with tq= 1+(2A) 'In(Ag/p ). ' Typical values of R
are R =2.7 (A = 1), 4.2 (A =2), 6.8 (A =4), 8.8
(2 =6), and 9.7 (2 =7), and hence are at most of order
01 16 Thus m AFT/rn j'PT & 10

—2

To be more explicit, we take an example from Ref. 5;
the TC gauge group is SU(4) with Nf =14 technifer-
mions in the fundamental representation, i.e., a, =0.56,
b =0.85, and c = —0.73, which corresponds to A =1/
ba, =2. 1 and A, s = I/(ba, +ca, ) =4.0. Our formula
(8) yields rnf = 3.7 x 10 MeV (A =2) and =6. 1

X 10 MeV (A,s.=4), respectively, apart from the fac-
tor N (N & Nf in general, since not all F communicate
with a single f), thus still smaller than the realistic value

by more than two orders of magnitude. Other examples
presented in Ref. 5 also lead to similar results.

We thus conclude that AFT with slowly varying cou-

pling constant can only improve FCNC's problem by one
order of magnitude compared with the usual strongly
asymptotically free (A & 1) TC models, ' still two orders'

discrepancy being unsolved.
In contrast to the previous analysis ' based on the

modified ladder SD Eq. (6), we here made full use of the
formula (8) which was neatly derived from precisely the
same modified ladder SD Eq. (6) without further ap-
proximations. The failure of the slowly varying coupling
constant in AFT thus is simply traced to the assumption
that the asymptotic form of X(p), (11), is valid at the
point p=A~. One might be tempted to push away the
"asymptotic region" where (11) is valid into the "super-
ultraviolet" region p)&A~ so that the TC for p ~p ~A~
might behave like the theory with almost fixed coupling
constant. But then the trace of "asymptotically free"
TC can be seen nowhere; it does not make sense to argue
in the region p )A~ whether TC by itself is asymptoti-
cally free or nonfree, since the TC there is already
changed into a completely different theory, ETC or TC
at the preon level. Actually one might be able to avoid
(11) at p =As by letting A))7 in (10), which would,
however, substantially lead to the FPT itself as we have
mentioned.

In conclusion, we may define three kinds of coupling
constants in AFT in terms of "p„~ " above which

(p & p„„)Z(p) takes the form (11); (i) running

(p»ym & As ), (ii) slowlying varying (p„y & As ) and
(iii) almost fixed (p„„&As) coupling constants. Our
analysis in this Letter clearly demonstrated that FCNC's
can be sufficiently suppressed only by the almost fixed

coupling constant. But this is essentially the case of FPT

in Ref. 2 anyway.
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Linearized difI'erential equation reads

1G+ 1 —— G+ . —(X —X) ——, 1
——+ ——+ 1 ——1 k —k 1 1 1 1 1

t

' 2

G =0.

In the asymptotic region, this equation is reduced to (9).
'oThe renormalization-group-invariant expression for Z " (p) is given by

Z(p) —Ar3cp '1-,' In(p'/AT2c)]""
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where AT&
=p exp( —1/ba„) =pe ". Thus

A3 g p2[L ln( 2/A2 )] —A/2+1

expression for
where ATg =p

' 'Actually we have Z " =C(A)Z„, where C(A)
—:e "(2A)" ' ' . [W~g2 —~y2, ~r2(2A)] ' =1 (A =1,3), 1.3
(A =5), and 1.7 (A =7), etc.

'2To be precise, there is only one phase (spontaneously bro-
ken phase of the chiral symmetry) in AFT, without distinction
between "weak" and "strong" coupling phases in contrast to
FPT (Refs. 2 and 3). However, there are some similarities be-
tween the roles of X, (= —,

' ) in AFT (Ref. 8) and the critical
point 2, (= —,

' ) in FPT, particularly in the modified ladder SD
eq u a t Ion.

' The renormalization-group- invariant
(p) is given by Z(p) —Arz/p,

xexp[ —z(a/a, —I) '~ ] (Ref. 2). Thus ATc=Z„" p. Precisely
speaking, there exists a logarithmic factor in Z(p), i.e. ,

Z(p) —Arcp ' In(p/ATc), an additional enhancement factor
for mf by =7 (As/Arc —10').

'4For A ~, Eq. (10) actually yields, via the saddle-point
method,

Z(p) —[1 (W/p)+ I] ' Z„(p/4 ),

the logarithmic factor being dilferent from that in FPT (see
Ref. 13). This factor yields 0.6 at p =As (X„" =0.6Z„) but is

subject to the enhancement mentioned in Ref. 13. In view of
the crude estimate, we may simply set Z„"

'sin FPT, we simply put p(As) =0 and a(A&) =a, =rr/
3c2(F). In AFT, we set a„=a, (Ref. 8).

' We may list the values of R for unrealistic A: R=15
(A = 17), 22 (A = 100), and 24 (A =~),
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