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Nonlinear Realization of Heavy Fermions and Effective Lagrangean
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We show that when a member of the quark doublet obtains a mass much larger than any other scale,
this standard-model doublet becomes a nonlinear realization of SU(2). While the S-matrix elements are
SU(2) invariant, the Green's functions are not. We explicitly display the one-loop eff'ective Lagrangean
with external Higgs scalars.
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This Letter reports some of the results we have ob-
tained so far in our study of eA'ects of heavy fermions
within the framework of the standard electroweak
theory. The motivation for us to look into the present
problem is as follows: The pattern of masses of the vari-
ous fermion families seems to indicate that in the fourth
family, if in fact there is one more family, the mass of
the up-member quark will be very large. In fact,
perhaps the top quark in the third family is already
heavier than W and Z. If so, our analysis should apply.
Let us then generically call this heavy fermion top, and
its lighter partner bottom.

Now, in the standard model, with only one Higgs
doublet, the way to give a large mass to a fermion is to
raise its Yukawa coupling to the Higgs boson. There are
many questions we can ask in this situation.

We know that if we just raise the Yukawa couplings of
all members of a multiplet so as to give large masses to
all of them, we do not get decoupling. Instead, we have
the residual Wess-Zumino terms' in the eAective low-

energy theory. We are going one step further: What
will be the situation when we remove only a member of a
multiplet? In a gauged theory, we have a U(1) anomaly
and the theory is no longer renormalizable. We want to
find out how serious is this nonrenormalizability.

On a more practical side, we want to obtain explicitly
an effective Lagrangean, which is the most compact way
to summarize all the heavy-mass eAects. It is the pertur-
bative aspect of this problem which will be emphasized
and partly solved in this note. Our assumption here is
that the Yukawa coupling H is much larger than the
SU(2) SU(1) couplings gt z and the other Yukawa cou-
plings, but not so large that we need to discard perturba-
tion theory. We want to investigate low-energy physics.
In other words, when Mr is the largest scale in a prob-
lem, compared with all other masses and external mo-
menta, we want to find out how L

As a start, we want to deal with a simplified model, in
which we have no gauge fields. We have a Higgs doublet
and one quark family (the gauged theory will be dis-
cussed later):
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Let us look at the formal solutions at the tree level. We have for the mass of the t quark M, =Hv, v =(ttt ) =(tttot),
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where t~, and tL, are solutions of the homogeneous equation
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There are similar equations for b and p. By iterating these equations to obtain t =t(t , ob, ot)tLoetc. , we obtain all the
tree diagrams.

Here, we are interested in the situation when tL and t~ cannot be produced. We should set tL, =O, t~, =O for
M »p, rn or H »h, X, in which case, we have

P 1
—

[tt bt. +(pot —v)tL]/v

tL 1 p (p L'l)t /v
+ O(H '),
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or

rR rZ (P /P )bZ = (lZ )nonlinear.

The last is a constraint (p, p+)())z =0, which is a SU(2)-invariant statement. To put it dilferently, under a SU(2)
rotation exp(i r 6a) we can check explicitly that

(rZ )nonlinear (rZ )nonlinear+~~&3(rZ )nonlinear+ ( &6&i +8&2)bZ

which shows that we have a nonlinear realization of SU(2)
Note that we can expand p around its vacuum expectation value to make (p ) ' meaningful. We can show that the

nonlinear (NL) Lagrangean [rz = —(p+/p )bz, all quantities denoted by symbols with tildes over them correspond to
classical solutions]

XNL = —bz y
"i 'r)„bz —bR y"i ' B„bR —rz y"i ' r)„r —[h (bziir —

tzp +)bR+ H.c.] —
—,
' k(yy) '

reproduces all the tree results with only p and b as external lines to the accuracy of O(H ').
Let us turn to the problems of quantum corrections. We have the generating functional

f
lim e' J" = lim g dpdpdbdbdrdtexp ig d x[XL+(rTRbR+qzbz+rlrJ&+H. c.)lM~oo
f M,

=z dgdilldbdbexP iz d x[Xea-+(rTRbR+ zllb z+PJy +H. c)]
]

naively.
Note that we have made a subtle interchange of in-

tegration and the large-mass limit. This is a rather
dangerous interchange, because the external momenta of
a loop with a top quark inside may be some internal mo-
menta of some bigger loops. The machinery which
justifies this interchange after some rearrangement is the
Zimmermann's algebraic identity. In words, there are
oversubtractions supplied by an algebraic identity which
give meaning to the interchange.

We must digress here. By definition, any diagram
which contributes to the efIective Lagrangean has to
have at least one heavy internal line. Calculationally,
however, we want to exploit SU(2) invariance. It is

better first to include some parts of diagrams which have

only light internal lines and then subtract them out later.

!
(For example, in the scalar sector, these contribute to
terms which have up to four external derivatives; see
later. )

We treat the "eA'ective Lagrangean" which includes
these extra pieces in a loop expansion, We have seen
that the solution with LNL gives us all the tree graphs,
correct to order O(H '). This is a good point around
which to do quantum fluctuation. We write bL =BL
+bz, bR =BR+bR, 0 @+0 rz =Tz+rz, rR =TR.
Quantities with lower-case letters and tildes are solutions
of the nonlinear Lagrangean. Quantities which are capi-
talized, such as 8, @, and T's are quantum fluctuations.
Note that because b, p, and t are not exact solutions of
the Lagrangean LL, we have terms linear in fluctuations.
Specifically, we have

6XL
+L +NL+ ~R — + gR

Bbg , L NL

6LL
+BL + gL

BbL

SLL BLL+ TL + TR
~~L L NL HER L NL

6LL 6LL+@ —
tlu +J~~~u~, L—NL

Upon using the equations of the nonlinear model, we have

e' =exp i J~ d "xXNL J d@d&dBdBdTdTexp i J d x X'

where

+ H.c. +higher orders in fluctuations.

X'=[(B p +T p )(p ) '( —
y i 'B„tz+hp+bR)+(err rz+rlr bz)(rid ) ( oui 'r)„tz+hill+bR)+H. c]

+higher orders in fluctuation.

As we noted before, (p, it ) and (r, b)z transform like isodouhlets. If we make a simultaneous isospin rotation of
(C&,N ) and (T,B)z, we can easily see that terms which are higher order in fluctuations are all isospin invariant. The
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combinations BLp + Tq p and @ tL+ @ br are iso-
singlets. Then, the only term which is apparently nonin-
variant is

W = ( —y"i ' B„rL+h(t +bR)/y p

However, if we use the equations of motion, we have, un-
der SU(2), BA'= —(i6a~+ Sa z) liL/((~ which has no one-
particle pole. Hence, W due to this part is in fact SU(2)
invariant on shell.

The conclusion of this discussion is that when includ-
ing the relevant light-particle diagrams we should end up
with a SU(2)-invariant 5 matrix. For the Green's-
function generating functional 8', we have monomials
built up from SU(2)-invariant quantities, which are
formed by (t,b)z, b~, and (p, (t7 ) and powers of X.
We shall call these efI'ective vertices.

The coe%cients which multiply these monomials de-
pend on powers of M, and lnM, . We need a power-
counting procedure to determine what this dependence
can be and when we can drop terms. By definition a dia-

gram has to have some heavy fermion lines to generate
effective vertices. Also, the structure of the interaction is
such that we do not have power infrared singularity due
to light quarks and bosons. This means that M, is the
scale of the integral in inverse powers. A standard power
counting establishes that for a given loop order (L), the
maximum number of derivatives (N) which can appear
in efI'ective vertices with nF external bottom lines is

N =2(L+ 1) —nF/2

There is something quite noticeable in this relation. The
number of external boson lines does not appear. This
means that we can have any arbitrary number of them.

One way to calculate the eAective Lagrangean is to
use the external-field technique, with the aid of SCHOON-
SCHIP. The calculational details will be reported else-
where and here we only ~rite down the one-loop results
with external scalars: (t7=(p t, p+),

. ~scalar ~

V
~ ~ ~(g2 ~ + ~ ~(4g ~

eH e e

where
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' ln(H'/h')], ';lt,'p+H. c.j,
in which we have used dimensional continuation to regu-
late, with a=2 —n/2, I '(1) = —0.577215. . . , and p is
the subtraction scale. The divergences can be minimally
subtracted by wave-function renormalization of p and
coupling renormalization of A, . We have also introduced
a compact notation I"'"', etc. Here, each pair of indices
acts on a bilinear (7((li. Thus,

I"" a„a.(t a~ a'p/pp, etc. ;

clearly, the power of (7t(t in the denominator of each term
is determined by dimensional consideration. We have
the following relations:

2C[2+ C24 = 15, 2C[3+ C2l =
9

and

C(2+Ci3= —,", —
—,
' ln(H /h ).

It is an amusing fact that in this model no physical pro-
cess can be used to disentangle Cl2, Cl3, C2l, and C24
further.

As remarked earlier, to obtain the true eA ective
Lagrangean, we should subtract oA all the contributions

from diagrams with only light internal bottom lines.
Here, only neutral scalars can be emitted. We obtain

+light ~light + +l&ght + +light.
scalar

V~;sh, can be deduced from "V" by replacing p
and setting H 0; X(Ise„ from "X( 1" in the

same fashion; and X(Is(, from "X "
by taking one-half

the values for the various coefficients. The ln(H /h )
terms cancel as they should. Then the true eAective
Lagrangean is

I-scalar " ~scalar ~ scalar

We have deliberately displayed ln(H /h ) terms.
These correspond to e ' divergences of the nonlinear
Lagrangean LNL. The other lnH should be absorbed
into wave-function and coupling renormalizations of the
original linear Lagrangean XL.

One can also look into the situation when the Higgs
scalar is heavy as well, X —0. This will result in another
constraint (t(li=v which can be used to reduce the num-
ber of invariants.
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Let us mention briefly the (gauged) standard model.
Our calculational procedure is based on the external-
field technique and therefore is particularly suited for the
background gauge-field formulation. We shall report in

other publications our results with external fermions.
Here we shall take into account the mixing of the

"top" quark with other light fermions to complete the
full SU(2)r XU(l)y gauge structure. Our approach as
exemplified earlier will enable us to identify easily those
processes which the standard model predicts to be
enhanced by heavy-quark eAects. This is of special in-

terest in B -B mixing, where recent evidence points to a
rather heavy top quark. In fact, the existing formulas
were derived under the assumption m, «m~, while our
approach is for m, &&m~. Clearly, new operator struc-
tures should exist and will give new contributions to the
low-energy theory. Another place where we will be able
to make definite statements about the theoretical situa-
tion is radiative decays of B mesons and their enhance-
ment due to heavy-quark eA'ects.

The counter-term structure of the eAective Lagrange-
an and apparently "nonrenormalizable" aspects, such as
anomaly and Wess-Zumino terms, will be treated later.

We shall then succeed in displaying all the heavy-
fermion eAects to this order in the standard model.
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