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Exact Solution of a Layered Neural Network Model
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We study a deterministic parallel feed-forward neural network. Exact results for the response of the
network are presented; given an initial state that has finite overlap with one stored random key pattern,
we calculate the overlap on all subsequent layers (time steps). A region of good recall is separated by a

first-order line from one of vanishing asymptotic overlap. Relaxation time to the limiting state is shown

to diverge at the overloading transition.

PACS numbers: 87.30.Gy, 05.40.+j, 05.50.+q

When a spin-glass or neural network is set in an initial
state, which then develops in time according to some dy-
namic rule, one of the most intriguing and important
questions that can be asked concerns remanence. ' For
example, the overlap of the state at time t with the initial
state converges for t ~ to a constant, that measures
the extent to which the system "remembers" its initial
state. In a neural network (that models a memory) one

typically starts with an initial state that has a finite over-

lap with a "key pattern, " and studies the overlap of the
final state with the same key pattern. This overlap
quantifies the extent to which the network is able to re-
call a learned key pattern. Analytic evaluation of rem-
anence is usually a rather complicated problem that has
not yet been accomplished. The exact solution of the
equilibrium statistical mechanics of various spin-glass
models does not contain any dynamic information; nei-
ther do calculations that aim at obtaining the number of
stable states of a system.

In what follows we present analytic results for a quan-

tity, m*, analogous to remanence in a layered neural
network. We find that as a parameter e is varied, m*
exhibits an "overloading" phase transition. For o; & a,
=0.269 we have m* =0, and m* &0 for a & o, The
transition is first order. Furthermore, we calculated the
manner in which the remanence relaxes with time to this
asymptotic value. Relaxation is exponential, with a
characteristic time scale r that diverges at the transition,

The model for which these results were obtained is a
layered feed-forward network, that has been introduced
recently. Consider L layers; each contains N cells
(spins), with a binary variable S; '1 = ~ 1 associated with

cell i of layer l. Each cell is connected to alI cells of the
neighboring layers. The bonds are, however, unidirec-
tional: The state of layer l + 1 is determined by the state
(at the previous time step) of layer 1. Dynamics is fully
deterministic (zero temperature) and parallel,

(l + 1 ) sgn ~ J (l)g (l)

The couplings or bonds J'j are chosen by the popular

prescription '

J tt) 1 t+)tg( )t
aN

IJ + I v J v

v=1

where g;t'l with v=1, 2, . . . , aN are the stored key pat-
terns.

Note that each key pattern carries a layer index. This
is a central feature that characterizes the class of model
neural networks studied in Ref. 6; it has conceptual as
well as technical significance. Conceptually, it repre-
sents the fact that only the first layer of a network is in

direct contact with the "external world, " and hence only
on the first (input) layer are the representations of the
key patterns externally dictated. On all subsequent lay-
ers the system is free to choose an internal representation
of any key pattern. Using an iterated learning pro-
cedure, we have shown that the network is capable of
perfect recall of key patterns. No such iterated learning
is allowed in the network considered here (named "sim-
ple" in Ref. 6). We assume that the internal representa-
tions g;t'l of the key patterns are randomly chosen; all
g;ttl = ~ 1 with equal probability. It is precisely this
fact, of the independent choice of representations on

different layers, that technically allows analytic solution
of our model. The solution yields information on the
time development of the system: The first layer is set in

an initial state, which determines the state of the next
layer at the next (discrete) time step, and so on. Hence
obviously our model can also be viewed as one with a sin-

gle layer of cells, but time-dependent couplings. We em-

phasize that we do not address here the problem of the
dynamics of the learning process; only the operational
stage is studied.

Related but different layered networks were widely
studied: as models of associative memory, as processing
devices trained to recognize translationally invariant pat-
terns or to identify the parity of a sequence, as well as
models for the emergence of spatial-opponent and orien-
tation selective cells. ' The complexity of the algorithms
obtained precludes analytical statements on these net-
works. Other related models include the Little model;
if in our model we force the representations of the key
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patterns to be the same on all layers, and set J;; =0, the
Little model results, with our layer index corresponding
to time in the latter. For the Little model only the over-
laps following two time steps were analytically calculat-
ed. " Another related model' is a cellular atomaton
whose dynamic rule is a random function of position. '

Our model can be thought of as a cellular automaton in

which the dynamic rule is a (random) function of time.
By exact solution of our model we mean that given an

initial state that has overlap m ' with a key pattern, we
have a recursive formula that yields the overlap on any
subsequent layer and/or time step, averaged over all key
patterns g. We calculate this solution using the same
methods as applied to the Little-model stable states, '

and to dynamics of the Sherrington-Kirkpatrick and Lit-
tle models. '' Here only an outline of the method is

given: Details will be presented elsewhere. '

Consider a random assignment of v =1,2, . . . , eN key
patterns g;('„on each of L layers of the network. Choose
an initial state on the first layer, S; ', such that its over-
lap with one key pattern (say v= 1) is m ' =O(1) and
with the other patterns v& I, m, ' = 0(1/ JN ) The.

question we ask is what is the probability P(m ! m (' )
that the dynamic rules (1) and (2) produce on layer L a
state S that has overlap m ( ) =O(1) with key pattern
g;()) [and O(1/vN ) with the others]? In order to "en-
force" the dynamic rule, consider on each site of layers
l & I the quantity '

R (I) g (I) ~ J(1—1)g(1—I) (3)l l ~j lJ J

When R;' &0 spin i on layer l is aligned with the

!
"field" produced by the spins of the previous layer, as re-
quired by (1). Hence when the quantity

L —
1 1V

Y[[&].S (() S(L)] ~ g g 0(R 0+())
Ig (2) g (L —1)I I = I i = 1

the dynamic rule indeed takes us from the initial state 5 ' to the final state 5
Summing Y over all N~ realizations of the key patterns [g], ' one obtains the fraction f(S('),S(L)) of all

configurations that take the system from 5 ' to 5 . This fraction depends on the initial and final states only through
their overlaps with the respective key patterns, m ' and m . Thus the probability we wanted to calculate is given by

P(m ! m ' ) =exp[Ns(m )](I/N() Q Y[j(],S ',S ]

where exp[Ns(m )] is the number of states S with overlap m, and

s(m) = —
—,
' (1 —m)ln [ —,

' (1 —m)] —
—,
' (1+m)ln [ —,

' (1+m)].

The conditional probability (5) is evaluated with some fairly standard techniques. ' ' First, each 0 function is
represented as a double integral,

r
0(R) = J dp J dxexp[ip(R —x)],

the summation over the g and S variables is carried out, and P(m (
! m ) is expressed in terms of a multiple integral,

~L —
1 L —

1 L —
1 L —

1

p( (L)! (()) ( I ~ d (l) d" (I) Q dp (I) dp(l)d (!)e p, N g q (l)q (()+ y p(l)P (()

l=1 1=2

where C is a constant and

+&NlnZ(q(1) q
(L ) p(2) p (L )))+N g [z(m (())+f(()]

1=2
(6)

f ' = —' (1 —m ' )Inl( + —' (1+m ' )lnI '

with'

(7)

I C =,
&z J~,»exp( —y /2)dy; b C =

Note that the integration variables m are the overlap on the intermediate layers. The function Z is given by

,( r) i l d~ dl
)l))l y ) l) l) ill g i)) L l)1

~
) y g )li

~
) ~ " il)) il )) ri il—

In the limit N ~ the integral is evaluated by the saddle-point method; the integrand has the form exp(NF); setting
equal to zero the derivatives of F with respect to the integration variables yields saddle-point equations. We supple-
ment these by 6F/Bm ) =0, corresponding to evaluation of the value of m (L) at which P(m (~)!m (')) is maximal. The
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FIG. 1. Remanence, or asymptotic overlap m* with a key
pattern, vs a. The upper branch and the m*=0 line (both
solid lines) are stable fixed points of the dynamic recursions
Eq. (10). The lower branch (dashed) is unstable. For
a & a, =0.269 only the m* =0 solution is accessible.
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FIG. 2. The two phases, one with high remanence
(memory) and one with m* =0, are separated by a first-order
line. For initial overlap m ' & m, ' vanishing, limiting m* is
obtained, even for a & a, . In the phase with m* & 0 the limit-
ing overlap is given by the upper branch of Fig. 1.

m '+' =erf[m '/(2aq ' ) '
l (10)

distribution of m goes in the limit N ~ to a 6 func-
tion around this value.

The saddle-point equations can be solved'; the rele-
vant part of the solution consists of a recursion relation
that determines the overlap on layer 1, rn ', and the vari-
able q

' in terms of m ' ' and q
' ' . The recursions

have the form

stable and the lower branch unstable. This fixed-point
topology is similar to the critical manifold of the q-state
Potts models, ' with a corresponding to q.

For the relevant parameters of the problem, namely a
and the initial overlap m '), the dynamics governed by
Eq. (10) ives rise to the phase diagram of Fig. 2. For
m I') & m, ') the limiting overlap m*&0, and its value is
given by the upper branch of Fig. 1. For a (& 1 this
branch has the form m *= 1

—(2a/tr) 't exp( —1/2a).

and

q
' "=I+(2/atr)exp[ —(m ' ) /aq ' ].

1.0
CI Ci C3 G-C) W t)-O Q~-Q-Q ™

The value of m ' is set by the initial state, and q
' =1.

We have previously obtained (10) for m; however, its
form is only an approximation for the solution on subse-
quent layers. The diff'erence is due to the fact that for
all i and i & 1, 5;' and g „are correlated. When these
correlations are neglected and the recursion with q =1 is
used as an approximation for the recursion for l ) 2 as
well, a continuous transition results, at a, =2/tr. This
approximation is modified in (10) by the fact that the
"width" parameter q

' also changes with I, as if the
eA'ective value of a got renormalized by the increase of
layer index and/or time. The effects of this modification
on the predictions derived from the exact solution (10)
are rather dramatic. The long-time, large-L behavior of
the overlap is determined by the fixed points of (10),
m ' =m* (the recursion for q is parasitic, dragged by
m ' ). The solution of the fixed-point equation is plotted
versus a in Fig. 1. The I*=0 fixed point is always
stable; for a & a, =0.269, however, two additional solu-
tions exist. The branch with higher values of m* is

0.9
0, = G.20

0.3
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FIG. 3. Overlap m t'i as function of layer index (or time) I.
The initial overlap for the two upper curves is above m, ' of
Fig. 2; the circles represent simulations (with N =200) that
agree perfectly with the analytic curves. The lower curve starts
at an initial overlap of 0.2, below m, ' . Deviations of simula-
tions from the analytic curve are due to finite-size effects.
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As we decrease m ' (for fixed a & a, ), and cross
m,t')(a), the boundary of this phase, m* jumps discon-
tinuously to zero; the transition is first order. Such be-
havior was seen in another model recently. '

It is of interest to note that even though the transition
is first order, the model exhibits "critical slowing down. "
Relaxation to the limiting value of rn* is exponential;
m ' —m* —exp( —ljr) The. relaxation rate r is deter-
mined by the recursion relations (10), linearized near
m*. Since as e a, two branches merge, one stable
and one unstable, the fixed point at e, must be marginal-
ly stable, and hence i must diverge. Indeed, we find'
that r —(rr, —a)

We have checked the exact solution (10) against nu-

merical simulations. The main purpose of this is to find

out the importance of finite-size eAects. As evident from
Fig. 3, for a not too close to the transition region excel-
lent agreement with the exact solution (valid for
N ~) is obtained, even for N as low as 200. Finite-
size effects become important as the phase boundary is
approached. This can be seen to some extent in Fig. 3;
while the upper two curves (corresponding to initial over-

laps m ' well within the m*e0 phase) exhibit perfect
agreement with simulations, development from m '

=0.2 does deviate slightly from the exact solution. This
is due to the fact that near m, ' some members of the
simulated ensemble flow to the "wrong" phase. Howev-

er, as N increases, the relative weight of these "errors"
decreases. The lower curve of Fig. 3 shows another in-

teresting eflect; even though the final overlap is 0, initial-
ly the overlap increases. Similar increase was found for
the first time steps of the Little model. ''

We have extended the calculations outlined above to
initial states that have finite overlap with more than one
key pattern, and to finite "temperature" dynamics.
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Note added. —After completion of this work we re-
ceived a preprint by Derrida, Gardner, and Zippelius,
who solved a highly diluted asymmetric neural network,
and found a continuous transition.
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