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We report neutron-scattering measurements with polarization analysis on a large single crystal of FeSi
up to 650 K. A strongly g-dependent magnetic scattering is observed around (011) and the intensity fol-
lows the unusual shape of the static susceptibility. Surprisingly, the energy-integrated magnetic cross
sections are almost g independent. This represents an entirely new kind of magnetism which, overall,

supports the picture of temperature-induced moment in FeSi.

PACS numbers: 72.15.He, 75.20.En

Neutron scattering is a powerful probe of magnetic
systems. For example, the usual signatures of fer-
romagnetism are magnetic Bragg peaks which reveal the
long-range magnetic order, and structure in S(g,w)
from polarized-beam measurements which reflects the
symmetry of magnetic correlations. FeSi and MnSi
crystallize in a cubic structure (space group P2;3) in
which magnetic atoms are located at displaced face-
centered positions. MnSi is a spiral ferromagnet with
the Curie temperature T¢ =29 K. This fascinating crys-
tal has been extensively investigated by Ishikawa et al.'
and it is now considered a prototype of a weak itinerant-
electron fcrromagnet.2 FeSi, on the other hand, does not
order magnetically. It shows, however, a very unique
magnetic behavior which, until now, remains essentially
unexplained.

In 1967 Jaccarino et al.® reexamined the anomalous
properties of FeSi, in particular the dramatic tempera-
ture dependence of the susceptibility reproduced here at
the top of Fig. 1. They proposed that FeSi is a nearly
ferromagnetic small-gap semiconductor as an alternative
to models involving strongly exchange-coupled isolated
spins or an antiferromagnetic phase below a (rather
high) ordering temperature. The gap model was sup-
ported by a band calculation by Nakanishi, Yanase, and
Hasegawa,* while a spin-fluctuation model by Takahashi
and Moriya® gave a satisfactory account for X(7") and
the specific heat. Evangelou and Edwards® then em-
phasized the itinerant-electron nature of FeSi and point-
ed out the likelihood of ferromagnetic correlations.
Neutron-scattering experiments’~® prior to 1983 failed
to detect any magnetic scattering. More recently Zie-
beck et al.'® observed a magnetic signal from FeSi
powder using polarization analysis; their 500-K data are
reproduced as the inset to Fig. 2. The increase in mag-
netization at small ¢ was interpreted as a signature of
ferromagnetic correlations, while it was claimed that the

coupling changes to antiferromagnetic at low tempera-
tures.

In this paper we report polarized-neutron results on
FeSi showing that S(Q,w) indeed exhibits a strong peak
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FIG. 1. Comparison of the magnetic susceptibility (Ref. 1)
and the magnetic scattering of FeSi. The neutron data are
taken near (011) with energy resolution FWHM of 15 meV.
The line is a guide to the eye.
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FIG. 2. The Q dependence of magnetic cross sections along
the [0,£,¢] direction at 500 K, normalized by f2. Inset:
Powder data by Ziebeck ez al. (Ref. 10). d*(011)=1.98 A ™!
at 300 K.

at (011), implying ferromagnetic correlations, but the
energy-integrated data show no g dependence. This nov-
el combination of properties does not fit the usual picture
of ferromagnetic correlations but is consistent with the
model of temperature-induced paramagnetism. We
studied a large (~12 cm?), nearly perfect single crystal
of FeSi recently grown at Tohoku University. Prelimi-
nary work on a smaller, less perfect specimen failed to
show any correlations, partly because we assumed that
the magnetic cross section was ¢ independent and thus
concentrated our measurements away from Bragg peaks
to minimize background. With the new crystal it be-
came feasible to explore systematically a wide range of
q, T, and excitation energy. We used Heusler crystals as
both polarizer and analyzer, and varied the energy
transfer via E;, the final energy E, being fixed at 41 or
60 meV. We were obliged to use rather poor collima-
tion, 40'-80'-80'-130', to obtain sufficient intensity.
Magnetic scattering was isolated by taking the intensity
difference 1(HF) —I(VF) between horizontal and verti-
cal fields. Details may be found in Wicksted, Boni, and
Shirane. !

As shown in the lower portion of Fig. 1, the small-g
magnetic scattering intensity shows a temperature
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FIG. 3. Selected constant Q scans for FeSi. Collimation is
40'-80'-80'-130". The data for (0,0.93,0.93) at 80 K are asym-
metric. The data for (0,1.2,1.2) at 200 K lie below 100 at all
energies. Lines are a guide to the eye.

dependence which closely follows x(7). In Fig. 2 we
show the g dependence along (0,,¢) of the magnetic
scattering at 500 K, normalized to the form factor for
comparison with Ref. 10. Our low-Q data suggest fer-
romagnetic correlations, consistent with Ref. 10 (inset),
which are much more clearly evident in our data around
the (011) Bragg point (corresponding to 2.0 A ™!, a re-
gion that was not scanned in the powder experiment).
We emphasize that the data shown in Figs. 1 and 2 are
obtained with the analyzer set at AE =0 of 60-meV neu-
trons, with instrumental resolution (FWHM) of 15 meV.

At present we have limited data of S(Q,w), as shown
in Fig. 3, not enough to characterize the scattering func-
tion for the entire Brillouin zone. When we compare the
top and bottom panels of Fig. 3, the energy width of the
*“correlations” increases rapidly with g as we go off the
(011) Bragg point (0.07 top vs 0.2 bottom, in reduced
units g). Furthermore, this energy broadening is
markedly asymmetric at large g, especially at low tem-
peratures. These observations indicate that neither of
the data sets in Fig. 2 represents the ¢ dependence of the
magnetization M(g). This can be obtained by energy
integration of magnetic cross sections:

Mz(q)ocfllmag(HF)—Imag(VF)]dw,
from which we estimated M(q) for the ¢ and T range
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FIG. 4. (a) Normalized magnetic intensities for selected
temperatures. (b) Energy-integrated magnetic cross sections
as functions of momentum transfer g at selected temperatures.

where the observed profiles are symmetric. Surprisingly,
these are nearly ¢ independent for a wide temperature
range (Fig. 4). At present there is no theoretical predic-
tion of the unique characteristic of magnetic scattering
from FeSi. Moreover, the shape of Ima(g) is nearly
constant for a wide range of temperatures (see Fig. 4)
and only the intensity increases. This increase, we be-
lieve, is the unique signature of temperature-induced
magnetism in FeSi.

Now let us examine these neutron-scattering data
from FeSi in the context of what we know about the gen-
eral characteristics of paramagnetic scattering from a
cubic ferromagnet above T'¢c. The scattering function is

2
r w/kT
5(0.0) =M *(0) —— , a
Q.o K12+q2 24?2 | —e ~9kT ()
xi
Mz(q)=M2(0)ﬁ, 2)
kitgq

with Q =2nt+g and I'=Ag?> at Tc. The strong g
dependence of magnetic scattering prevails near 7T ¢
where the inverse correlation length «; is small. At high
temperature the system becomes truly paramagnetic,
namely k;— oo. However, the linewidth I" remains g
dependent and tends to approach zero as g — 0. This

was demonstrated in high-temperature studies'? of the
localized ferromagnetic Pd;MnSn. At 7 =4T(, this
crystal shows a strong ¢ dependence for I" while M (q) is
almost g independent. The unique feature of FeSi is the
strong temperature dependence of M 2(0), which is not
found in localized ferromagnets.

The shape of the scattering function S(Q,w) is sym-
metric Lorentzian at high temperature, kT > T, because
the temperature factor [last term in Eq. (1)] is nearly
unity. At large g and low temperature, the observed
shape is asymmetric, in particular, the 300 K data at
(0,1.2,1.2) in Fig. 3. Lower-g data also exhibit similar
asymmetry at lower temperatures. These line shapes are
mainly caused by the thermal factor in Eq. (1) and prob-
ably not directly reflecting the energy gap in the system.

All features of magnetic scattering for FeSi presented
in this Letter are consistent with temperature-induced
magnetism in which magnetic electrons are thermally ex-
cited. In this sense, one should not use ““ferromagnetic”
correlations to describe FeSi. There are many important
problems remaining for this unique magnet FeSi includ-
ing more precise characterization of S(Q,w), in particu-
lar at high- and low-temperature limits. More specific
theoretical calculations will also be needed to design ad-
ditional experiments to probe the model of temperature-
induced magnetism in detail.
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