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The scaling variables in the theory of the interacting disordered system are interpreted in terms of the
quasiparticle density of states and diffusion constant, and Fermi-liquid interaction parameters. In the
absence of spin-flip or spin-orbit scattering, the scaling theory valid to first order in the disorder is inter-
preted and a general description of possible scaling scenarios is given.
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Understanding of the metal-insulator transition in in-
teracting disordered systems has seen dramatic progress
in the last three years. The breakthrough was provided
by Finkelstein,!=* who identified the relevant scaling
variables in the problem in terms of a mapping to a non-
linear o model. A number of authors have noted the
similarity of the results of Finkelstein’s theory for physi-
cal quantities such as compressibility,! spin susceptibili-
ty,2>% and specific heat” to those expected in the Fermi-
liquid theory. The correspondence between the couplings
of the nonlinear o model and the Fermi-liquid parame-
ters was stressed in Ref. 7. A phenomenological trans-
port theory for disordered interacting systems was writ-
ten down by McMillan.® In this Letter we make this
analogy precise by defining the notion of quasiparticles
in a disordered medium. Finkelstein’s theory can be un-
derstood in terms of Landau’s basic assumptions, with
one simplification— the interaction functions do not have
complicated angular dependence—and a crucial compli-
cation—the Landau parameters are scale dependent.

Following Landau, we assume that the low-lying exci-
tations of the interacting disordered system consists of
quasiparticles (QP) and quasiholes; i.e., the unaveraged
one-particle Green’s function for small frequencies is
dominated by simple poles plus an analytic incoherent
term @inc:
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In Eq. (1), a, is the QP weight, E, — u is the QP energy
measured with respect to the Fermi energy, t, is the QP
lifetime, and ¢, (x) is the “QP wave function” which can
be defined formally as the basis which diagonalizes
G(x,x',w) for w— 0. Fleishman and Anderson® out-
lined a Fermi-liquid approach to the insulating phase,
and gave general arguments to justify the diagonalizabil-
ity of G(x,x’,0). Their arguments apply in the metallic
side as well.

To make further progress in the interpretation of Eq.
(1), we must consider impurity-averaged quantities,
which we denote by ();. The simplest quantity is the QP
density of states: po(E) =V ~'Y 8(E —E,));, where V
is the volume. We also introduce the single-particle den-
sity of states

pilw)=—7a""V""Im[dxG(x,x,0)
which is measured in tunneling experiment. We have

pi(E—p) =W 'Y a,8(E—E,))i=apo(E).

From now on we assume that the spectral weight is not
correlated with the QP energy. We introduce a as the
impurity average of a, and we will be interested in E at
the Fermi energy.

We next consider the function

L(q,w,€)=V "~ ’fd3x d3x(Go(x,x",e+ )Gy (x',x,€));e'4 ®~%)

where Gy is the first term in Eq. (1). L(g,®) is related to the Fourier transform of the probability of finding at x' a

particle which was initially at x. Assuming diffusive QP, i.e.,

|fdx on(x)*e T, (x) | 2=Dgoq*/lnpoV{(E, — En)*+ (Dog? 31,

we can show that!°

L(q,w,¢6) =2ra’ppé(e)w(Doq? —iw+15") 71,

(2)

where Dy is the QP diffusion constant and 7y is its average lifetime. The factor 6(¢)w in Eq. (2) expresses the fact
that L =0 unless ¢+ > 0 and ¢ < 0. Note that the QP wave functions ¢, are not the same as the exact eigenstates of
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noninteracting electrons in the same random potential,
and Dy will in general be very different from its value in
the absence of interactions.

The quantity L(g,w,¢) can also be calculated in the
field-theory formulation! or in perturbation theory.’
This connection allows us to check the validity of the
diffusive assumption implicit in Eq. (2), in perturbation
theory in 1/ksIl, and to calculate the relevant scaling
quantities. In the perturbative approach, the incoherent
part of G is absorbed into the definition of the static ver-
tex function by taking advantage of the dependence on
0/D'q? in a way analogous to clean Fermi-liquid theory.
We obtain?®

L(g,w,€) =2rpo¢?5(e)w/(D'q? —izw+ t0"),

where po is the bare density of states, ¢ is the renormal-
ization of the single-particle density of states so that
p1=¢po, D' is the renormalized diffusion constant, z is
the frequency renormalization, and t,, is the phase re-
laxation time. Comparison with Eq. (2) shows that we
should identify Do =D'/z, pg=zpy, t9=zTp, and a
=¢/z. The interpretation of z as the renormalization of
the QP density of states implies that y (the linear term
in the specific heat) is renormalized by 2z, ie.,
v/ vo=z =pg/po. This is in agreement with renormalized
perturbative analysis.

Next the theory proceeds to analyze response function
in terms of skeleton diagrams involving L and the short-
range part of the static interaction amplitudes I. The
only difference from the ordered Fermi-liquid theory is
that momentum is not a conserved quantity, so that [is
characterized only by spin variables and is parametrized
by singlet and triplet_ amplitudes I, and T, in the
pargicle-pole channel. I'y and I’y are often parametrized
as [, =01 —TI%/2 and T, =—T,/2. Just as in ordinary
Fermi-liquid theory, we take advantage of the singular
dependence of L on the ratio Dqu/w to write physical
response functions in terms of scattering amplitudes on
the Fermi surface. One then uses conservation laws (i.e.,
Ward identities) to derive the relations>® (dn/du)/pg
=(pg/po) (1 —2y,) and

Z/Zo=(pQ/po)(1 - 52) =(pQ/po)(1 —2y),

where X is the spin susceptibility. This is the Fermi-
liquid way of writing response functions as a product of
density of states and interaction correction. We define
¥i =pol*li/z, i=1,2,s,t, and it is clear that 2y, and 27,
play the role of the Landau parameters 4§ and 4§ in the
Fermi-liquid theory. The analogy with ordered Fermi-
liquid theory is even more apparent if we rewrite
vi=a’pgl;.

Finally the charge-diffusion constant D=c/e?(dn/
du), where o is the conductivity, and the spin-diffusion
constant Dg are given by">® D=pD'po/(dn/du)
=DQ/(1 —2v%), Ds =D'Xo/X=DQ/(l+}'2). We can
also show that the thermal diffusion constant Dr=Dy
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without any correction due to the Landau parameters.
These are the expected relations in a phenomenological
Fermi-liquid description.

The parameters z, y;, y,, together with the disorder
parameter t =e;A? " 2/o (where €4 is a numerical con-
stant and A=/ "! is the momentum upper cutoff), are
the scaling parameters in the field theory! and they are
all directly related to physically observables dn/du, X, D,
Ds, and Dr. The presence of infrared divergences in the
theory for 4 =2 requires a renormalization of the scaling
parameters. Fluctuations with momentum AA <g <A
and all frequencies are integrated out at each stage, and
scaling equations for ¢, y;, and z are derived.'"® They
fall naturally into different universality classes, depend-
ing on the presence of spin-flip or spin-orbit scattering or
high magnetic field, and have been analyzed in the litera-
ture.!"®!! Here we interpret the nature of these transi-
tions in terms of the QP picture. 4 priori a metal-
insulator transition could be caused by either a vanishing
Do or pg, or both. We shall show that all these
scenarios are realized.

(a) The general case.'”’—In the absence of sym-
metry-breaking fields, the scaling equations for d =2+¢
to first order in ¢ and all orders in y; are

dt et 1+ 7,
—=——4¢?(4=3—=1n(1+7,) |, 3)
dé 2 72 72
dy/de=L1(1+1,)2, 4)

where &= —InA% There exists a stable fixed point at
yy =oo, z =00, and t* =0, such that y¥1* =¢. Near this
fixed point an approximate solution is 5 '(£) =(y5"
—to/€)+ (to/€)e ~¥/2, where y and to are the initial
values. There is a critical line in the (yy,79) plane
(given by the condition yp' —to/e=0 for y50>>1) along
which y, flows to infinity. On one side of this line we
have metallic behavior. The flows on the metal side of
the transition end in a Fermi-liquid fixed line (+ =0, y,
arbitrary) which represents all the possible Fermi-liquid
fixed points (characterized by different values of the
Fermi-liquid parameter y,). X diverges as the critical
line is approached. On the insulating side of the transi-
tion (when y!' —to/e <0), 7, diverges at a finite scale.
At the same time, z diverges while (1) and therefore
o(1) remain finite. Thus it was not clear whether this is
a metal-insulator transition at all.

The Fermi-liquid theory we developed now permits a
clear physical interpretation of the above results. The
first observation is that as the transition is approached
from the metallic side, D remains constant, but Dy scales
to zero since z— oo. Thus the transition corresponds to
the localization of the QP and is a metal-insulator transi-
tion. At the transition, (1) ~A€ so that c(A) =4 ~¢r (1)
scales to a constant. Since the QP’s are localized we ex-
pect o to be zero on the insulating side so that the zero-
temperature conductivity jumps discontinuously at the
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transition, i.e., we have a metal-insulator transition with
a minimum metallic conductivity.!> In terms of QP’s,
this surprising result can be understood by our writing
c=e2pQDQ and noticing that z =1 3¢ and the diver-
gence in pp compensates for the vanishing Dp=z ~!
~A%. On the insulating side, we already mentioned
that y, and z diverge at A =A.. It is now natural to in-
terpret A. as the inverse localization length. We find
that A. '~ |n—n.| =Y with v=1/e.

The tunneling density of states p; increases with de-
creasing energy scale but reaches a finite value

pr=poexpi—+ [ d(© (O =31n(n)]

at the transition. The QP weight a =¢/z == A3¢ vanishes
at the transition. We note that as far as the magnetic
properties are concerned, one expects that on the local-
ized side, the formation of local moment must lead to
infinite susceptibility at zero temperature. In the ab-
sence of spin-flip scattering, this divergence must be
reflected in the metallic side, as well. In the Fermi-
liquid theory, the divergence of X is driven by a simul-
taneous divergence of pg/po=z and y,. Thus our result
is different from the Brinkman-Rice picture, where the X
divergence is entirely due to an infinite density of states.
It is gratifying to see that the scaling theory produces a
divergent X even in the Fermi-liquid regime, and the van-
ishing of the spectral weight a may be interpreted as a
gradual conversion of the elementary excitation from
density fluctuation to spin fluctuation.

Finally it is necessary to check that the basic require-
ment, that QP excitations are well defined, should be
obeyed, i.e., 75 ' <kT. It was found earlier that 7.y is
enhanced near the transition.!> We find that near the
transition, when y,>1,

10 /T =3x(t*y3/e)(T7) €2 — (TTQ)ED]‘

Expanding in ¢, we find rQ_l/Tz 37me up to logarithmic
accuracy, so that in principle, the QP’s are marginally
well defined. Note that the appearance of z in 7g is cru-
cial, since rp_h' itself becomes greater than k7 in the €
expansion.

It is useful to discuss these results in the framework of
a general scaling theory with the parameters ¢, y,, and
z.1* Let us focus on the density-density correlation func-
tion and parametrize it as

(dn/dp)D(q,w)q*/|D(q,0)q*—iol

and introduce the conductivity o(g,w)=~(dn/du)

xD(q,w); then
ol(g,w,t,72) =24"2a(g/A, 0/A4T5t(0), y21),  (5)

where the exponent x is defined by z =X ~*. We have as-
sumed that the first-order in ¢ result that dn/dyu is not re-

normalized! is true in general. Consequently, the bare
g y

dimension A9~ appears in Eq. (5). One proceeds to ex-
pand about the fixed point ¢*,y5 and there are two pos-
sibilities. (i) ¢* and y¥ are finite (which turns out to be
the case in the presence of magnetic impurities, spin-
orbit scattering, or a magnetic field), and we immediate-
ly obtain the result c~*£279 (ii) * =0 and y¥ =0
so that some combination f(y5) ¢t* =const. In this case,
t is a dangerously irrelevant variable; we can no longer
set t=t* in Eq. (5). Instead, we introduce a new ex-
ponent 8 by (1) =A% and note that on the length scale &,
o is linear in 7 ~!, so that we obtain

olg,w) =E279YOF (& wE?+¥), (6)

where F is a dimensionless scaling function which goes to
a constant when its arguments are zero. Thus the con-
ductivity exponent u (defined by o= |n—n.|*) is given
by p=(d —2—0)v. Similar considerations on the insu-
lating side show that the dielectric constant E diverges
as'* E=¢£2%**%  We note that the solution of the first-
order scaling equations (3) and (4) yields 8=d —2 and a
minimum metallic conductivity results. This is because
the second term in Eq. (3) is negligible near the fixed
point. However, it is entirely possible that higher-order
terms in Eqgs. (3) and (4) will change the picture. For
example, if the next-order term in Eq. (3) is az3y3, this
will lead to 6 =d —2 —6ae? so that the conductivity will
vanish as a power law again. Worse yet, if the higher-
order terms contain high powers of y, (e.g., 13y3), we
will not have a systematic expansion in ¢. Without
knowing the functional form of the higher-order terms,
we do not know which if these scenarios actually occurs.

(b) Strong magnetic field,>>’ magnetic impuri-
ties,>>7 and the spin-orbit case."*’— All these cases be-
long to possibility (i), i.e., t* is finite, and the metal-
insulator transition has been described in detail earlier.
We have checked that 75 !/T <1 is always obeyed in
2+ ¢ dimensions and that the QP residue vanishes at the
transition. In the case of strong magnetic field, pp is
finite at the transition while Dy vanishes. For magnetic
impurities, both pp and Dy vanish as A2 Interestingly,
in the spin-orbit case, Dy is finite at the transition while
po vanishes, so that this transition should not be con-
sidered a localization transition at all.

Finally, we briefly discuss the experimental situation.
For alloys such as Ge;-,Au, or compensated doped
semiconductors, the conductivity appears to satisfy
o~ | x —x.|u, where u is of order unity.'> These cases
appear to belong to the class of strong spin-flip or spin-
orbit scattering, and are in qualitative agreement with
the theory. The one exception is uncompensated Si:P,
where u is found to be approximately +.'® It is known
experimentally that spin-flip and spin-orbits rates are
much less than kT up to n/n. = 1.06, with kT = 30 mK,
so that this system should belong to the general case.'’
In the general case, there are two possible scenarios: (a)
The solution is characterized by a minimum metallic
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conductivity,'? in which case we suggest that for n very
near n., the spin-flip or spin-orbit rate is enhanced so
that we crossover to the respective universality class, giv-
ing rise to an apparent exponent of u =+ . This interpre-
tation, while speculative at this point, can be tested by
one’s obtaining experimental measurements of the spin-
flip or spin-orbit rate for n very near n. and by making
similar tests on compensated samples. (b) The conduc-
tivity vanishes as a power law given by Eq. (6). In this
case, measurements of o, E, and the specific heat will
determine the three exponents v, 6, and x, and the con-
sistency of this picture can be checked from the tempera-
ture or frequency dependence of o at the transition.'* In
addition, the rigorous bound v>2/d can be tested.'s
The choice between (a) and (b) awaits further theoreti-
cal and experimental work. It is also possible that the
Fermi-liquid theory breaks down before we reach the
metal-insulator transition because of the formation of lo-
cal magnetic moments in the metal. However, to discuss
this possibility we need a theory of the Kondo effect in a
strongly disordered metal which is not available at
present.
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