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Recently there has been intense theoretical interest in

extending thermodynamic studies of two-dimension 1

p ases to the dynamics of ordering of a phase as it ap-
~ ~

proaches equilibrium from an initial nonequilibrium
disordered state. ' The reason for this interest is the
expectation that questions of universality, conservation
laws, and, eventually, interaction energies between ada-
toms in a 2D phase can be addressed from its ordering
behavior. A general prediction of models of growth dy-
namics' is that the growth of the average ordered-
domain size, L, obeys a power law

L =A(T)t

for a variety of conditions on the coverage, the time, and
the symmetry of the overlayer. Here A(T) is a rate
coefticient that depends on temperature and t is the or-
dering time. The exponent x depends only on conserva-
tion laws that are operative and on universal parameters
such as the number of degenerate low-temperature or-
dered phases that can coexist. Monte Carlo modeling
further indicates that the growth obeys a scaling rela-
tionship, i.e. , that the domain structure of the system at
some later time is similar to that at an earlier time after
distance has been rescaled. Self-similarity in the growth
implies scaling of the autocorrelation function of the
structure and hence also of its Fourier transform, which
is the angular distribution of intensity in beams dif-
fracted from the 2D phase,

(2)

of the peak intensity of superlattice beams with time.
In order to test for self-similarity and scaling and to
measure the domain-size distribution, angular profiles of
beams must be measured. In this Letter we present
LEED results for the growth of the p(2X I) domains
in W(I 10)-p(2&& 1)O at two coverages, 8=0.5 and
I9 =0.25 Schematic diagrams of the order existing at
some intermediate time in the ordering process for these
two situations are shown in Fig. 1. Ordering processes in

these two regimes can be fundamentally diferent, involv-

ing domain growth at 0=0.5 and nucleation, growth,
and coarsening at 0=0.25. We measure both the LEED
peak intensity and angular profile of p(2X 1) superlattice
reflections to investigate the growth law and check for
scaling behavior.

where S is the angular profile for a given reflection
defined b hefined by the momentum transfer wave vector k, t is the
time, Iz is the peak intensity, and F is some characteris-
tic function that depends on k and on the full width at
half maximum (FWHM), w, of the profile. The angular
distribution reflects the mean domain size and the size

istribution. Scaling implies that, although the average
domain size changes with time, the functional form of
the size distribution does not.

The few experimental studies of growth dynamics of
2D phases generally have been limited to evaluating the
growth law from diflraction measurements of the change

FIG. 1. Schematic diagrams of order existing at some inter-
mediate time in the ordering process for (a) two-phase coex-
istence and (b) a single phase.
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The experiment is carried out in a LEED diffractome-
ter at base pressures in the high 10 "-Torr range. The
instrument response, expressed in terms of the FWHM
of the narrowest profile that the instrument can measure,
is 0.04 of the Brillouin zone at the diffraction conditions
of the experiment and is taken into account in all data
analysis. The initial condition for the growth-dynamics
experiments is simulated by first cooling the W(110)
surface to =200 K and then dosing the surface with O.
Its mobility at this temperature is effectively zero, and
it is assumed that the distribution of 0 on the surface
represents an infinite-temperature configuration. The
system is subsequently rapidly raised to and held at a
temperature where 0 atoms are mobile and the intensity
increase of superlattice beams monitored. Angular
profiles are measured at regular intervals during the an-
nealing process. The oxygen coverage is determined by
monitoring the (0, —, ) beam intensity as a function of ex-
posure at 300 K and searching for its maximum, which
indicates 0=0.5. ' The coverage-exposure relationship
at 200 K is established by use of the results at 300 K and
sticking-coefficient measurements at 200 K. ' The valid-
ity of this procedure was checked by subsequently an-
nealing the layer at 300 K and comparing the peak in-
tensity and angular profile of the (0, —,

' ) beam to those
obtained for exposure at 300 K. Although the absolute
coverage above 0=0.45 is dificult to determine accu-
rately in this manner, because the sticking coefficient
drops rapidly above this coverage, structural phenomena
occurring' just above 0=0.5 aid in fixing 0=0.5.

Measurements were made from about 10 sec after the
initiation of the step in temperature to 900 sec there-
after, and repeated for seven temperatures between
=260 and =300 K. Below 260 K the ordering is too
slow to observe reliably. Within this temperature range,
we observe at both coverages a power-law growth of the
ordered domains for approximately 600 sec, after which
the growth begins to slow, indicating that a second
mechanism for ordering is becoming important. Above
300 K, the ordering is too rapid to identify unequivocally
the mechanism we observe at lower temperatures. At
0=0.5, the existence of power-law growth is determined
from a plot of ln(peak intensity) versus ln(time), which
shows a series of parallel straight lines. The slope of
these lines is 2x, where x is the growth exponent. The
factor of 2 arises because the peak intensity is propor-
tional to the square ' of the mean domain. Figure 2
shows a plot of the peak intensity for 0=0.5 at several
temperatures plotted versus t, where the growth
exponent' x =0.28 ~0.02. The lines are straight, go
through the origin, and have slopes that are proportional
to A(T).

Angular profiles corresponding to this ordering process
are measured at several times and fitted with a model
calculation of domain size and size distribution. ' We
find at 0=0.5 a narrow Gaussian domain-size distribu-
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FIG. 2. Demonstration of power-law growth at 0=0.5 from
peak intensities. The peak intensities at three temperatures are
plotted vs t ", with x =0.28. The slopes of the lines are propor-
tional to the rate constant A(T).

tion, changing in mean diameter from =9 to 15K as the
ordering proceeds. Such domains contain on the average
of 5 to 15 0 atoms and are thus still very small in this
time regime. Domain sizes for the fully annealed struc-
ture are an order of magnitude larger. By plotting
ln(mean domain size) versus ln(time) at several temper-
atures, we find a growth exponent of 0.28 ~0.02, in
agreement with the result for the peak intensity.

To consider scaling in the growth, angular profiles
after deconvolution' of the instrument response function
are replotted according to Eq. (2) with their FWHM's
normalized. The results for one temperature are shown
in Fig. 3(a). Similar agreement is achieved for the other
temperatures. It is evident that self-similar growth
occurs in the domains at 0=0.5 for 260 & T & 300 K.
This is, in fact, a necessary condition in view of the ob-
servations of power-law growth and nonvarying domain-
size distribution with time.

Theories and Monte Carlo modeling for ordering dy-
namics in a one-phase region ' ' suggest that the
growth exponent depends on ground-state degeneracy p
and is —,

' or lower. Available results for the symmetry
represented by W(110)-p(2x 1)O and p =4 predict
x =0.35. There is evidence ' that p =8 in this system.
Thus the theoretically expected exponent may even be
smaller than 0.35. To our knowledge, no calculation has
been made for p =8. The scaling function, F, that we
observe is a Gaussian, in agreement with Ref. 4.

The experimental situation at 0=0.25, where the over-
layer coexists at equilibrium as p (2 x 1) islands and
disordered lattice gas (Fig. 1), is more complicated. The
sequence of mechanisms of ordering of a quenched disor-
dered lattice gas in a two-phase region is expected to be
nucleation, growth by monomer addition from the super-
saturated lattice gas phase, and subsequently coarsening
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FIG. 3. Demonstration of scaling in the growth of p(2X 1)
domains at (a) 0=0.5 and (b) 0 =0.25. Angular profiles of the
(0, —,

' ) superlattice beam at a fixed temperature and several
times are plotted with their widths scaled according to Eq. (2).
The profile in (b) consists of a broad and a narrow Gaussian,
indicating a bimodal distribution of island sizes.

(growth of large islands at the expense of small ones) to
reduce boundary energy. We have investigated ordering
kinetics at this coverage in the same manner as indicated
for 0=0.5, by measuring angular profiles of a superlat-
tice difI'racted beam at various times and temperatures
and fitting the profiles. The profiles always show a nar-
row and a broad component, each of which can be fitted
with a Gaussian, indicating that the island-size distri-
bution is bimodal, consisting of large and small islands
that each are Gaussian distributed about their mean
sizes. Figure 3(b) shows that, to a good approximation,
both components of the profile scale with a single scaling
parameter. Over the measurement time and tempera-
ture range investigated, the mean size of the smaller is-
lands changes from =7 to 15 A with a standard devia-
tion of =3 A, the ratio of mean sizes of large and small
islands is =3, and the density of smaller islands is =15
that of the larger ones. If one accepts that the profiles
scale, then the peak intensity can be used' to determine
the growth exponent, giving x =0.28 ~ 0.05, very similar

to the value at 0=0.5.
The prevailing theory of growth by coarsening in a

two-phase coexistence region is that of Lifshitz and
Slyozov, for a model of p(1 x I) phase and lattice gas,
giving x = —,'. The same exponent is found even if the
concentration of ordered phase is large. ' No theory ex-
ists specifically for the present system, which is not
p(I X I) and has large degeneracy. It seems reasonable
that the growth exponent will be lower than —,

' . Scaling
is usually observed in the calculations. The experiment
indicates that scaling is obeyed; however, we observe a
bimodal size distribution. The origin of a bimodal distri-
bution may be fundamental or a consequence of defects.
One can imagine that islands with a critical small size
can decorate surface defects. However, it is not obvious
why such islands should grow, but more slowly than the
larger islands. On the other hand, if some form of
dift'usion zone mechanism' is operative, where all atoms
within a certain range preferentially diAuse to one is-

land, then a size distribution that has a component of
large, nearly equal-sized islands and another component
of much smaller islands may be possible. '

At late times for both coverages, the growth begins to
slow at sufticiently long times, indicating that the ex-
ponent is dropping. Although it cannot be conclusively
excluded that defects cause' the slowing down, we ob-
serve a temperature-dependent average domain size at
which the growth slows, which suggests that defects are
not responsible. '

Finally, we consider activation energies for these or-
dering processes. From data such as those shown in Fig.
2 and the assumption that A (T) in Eq. (1) has
Arrhenius-type behavior, one can directly extract an ac-
tivation energy. Doing so gives hH=0. 16+ 0.03 eV for
the process at 0=0.5 if the peak intensities are used and
0.17 ~0.5 eV if the mean sizes determined from the
profiles are used. This consistency is important and
rejects the scaling: If the size distribution function
changes over the course of the ordering, the peak intensi-

ty is not a meaningful quantity in terms of growth ex-
ponent or activation energy. At 0=0.25 the value is
AH=0. 15+ 0.06 eV very similar to the value at 0=0.5.
How are these activation energies to be interpreted? In
the Lifshitz-Slyozov theory, A(T) ~D'~, where D is the
diff'usion coe%cient. If one accepts that this theory is
applicable to our 0=0.25 data, then one obtains an ac-
tivation energy for diA'usion of 0 atoms on W(110) of
AHd;~=0. 45 eV, somewhat less than the 0.6 eV quoted
by Chen and Gomer. Our process is a nonequilibriurn
process, in contrast to that measured by Gomer, and it is
not surprising that the diffusion coe%cient in our case
should be less, because on the average, a diff'using 0
atom finds itself in a more unfavorable environment,
where it sees more repulsive interactions from adjacent
0 atoms, than in the equilibrium case. At 0=0.5 using
the experimentally determined growth exponent, one ob-
tains hHd~=0 5 eV. Its similarity to the value at
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0=0.25 can be understood on the basis of the similar
average interactions that a randomly placed atom at
0=0.25 and at 0=0.5 sees. '

In summary, we have observed scaling behavior in the
growth of a chemisorbed submonolayer at coverages cor-
responding to one-phase and two-phase coexistence re-
gions. We obtain very similar growth exponents in the
two cases, although the thermodynamic final states are
diAerent. We observe a bimodal size distribution for
growth in the two-phase region, with apparent scaling in

the growth in both components. We have determined ac-
tivation energies for the process, which can be interpret-
ed in terms of a nonequilibrium diAusion coefficient for
0 on W(110).
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