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Dynamical Properties of Quantum Many-Body Systems at Zero Temperature
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We present a method to compute dynamical correlation functions in quantum many-body systems at
zero temperature. The ground state of a finite system is evaluated exactly by a modified Lanczos
method and from it the real-frequency correlation functions are obtained by a projective technique for
the memory-function formalism. We apply the method to the density-density correlation function of a
one-dimensional spinless fermion system. Exact results are recovered in the noninteracting limit; in the
strong-coupling limit our results are compared with Monte Carlo simulation and analytical approxima-
tions.

PACS numbers: 75.10.Jm, 05.30.Ch, 71.10.+x, 71.45.Gm

In recent years, numerical simulation has proved to be
a powerful tool for the study of the thermodynamic and
ground-state properties of many-body systems. Howev-
er, evaluation of dynamical properties is still an open
problem despite the eA'ort devoted to the development of
appropriate Monte Carlo techniques to study such prop-
erties. In most many-body problems, strong- and weak-
coupling limits can be described by analytical approxi-
mations. However, frequently we are interested in the
crossover between these two regimes where many real
systems lie. Numerical methods are a powerful tool for
the study of these situations which give rise to the most
interesting physics. Recently, Hirsch and SchrieA'er
proposed an algorithm to compute correlation functions
of quantum systems. The method gives excellent results
only when used to evaluate real-frequency correlation
functions of simple, one-degree-of-freedom, systems. Al-
ternative methods have been developed to evaluate
real-time correlation functions directly and to make ana-
lytic continuation of the imaginary-time results for these
simple systems. The extension of all these methods to
the study of many-particle systems seems very difficult
mainly because of the enormous amount of computation-
al time required.

Schuttler and Scalapino developed a least-squares-fit
method to evaluate real-frequency correlation functions
of many-particle systems. The results obtained with this
method are only qualitatively correct. Use of this tech-
nique to evaluate correlation functions quantitatively
would again imply prohibitive amounts of computational
time.

We present here an alternative method to calculate
real-frequency correlation functions of finite many-body
systems at zero temperature. This method is ideal to
study the dynamics of finite systems such as spin systems
and fermions in a lattice. It allows us to calculate pre-
cisely real-frequency correlation functions of moderately
large systems.

A self-correlation function at zero temperature is

defined by

c„(r r') —=
& yo I A t(r )& (r ')

I yp&,

~here A is the Hermitean conjugate of the operator A,
A(t) is the Heisenberg representation of A, and

I yo& is
the ground state of the system. Many experiments mea-
sure directly the Fourier transform C~(co) of C~(t —t')
which is given by

x B(ro —(E Eo) ), (2)

G~(z) =&@0 I
& t(z H) '&

I wo&

The correlation function C~ (co) is obtained as

(3)

Cg(co) =x ' ImG~ (r0+iq+Eo) (4)

where the summation is taken over all the eigenstates
I y„) of H with energy E„,Eo being the ground-state en-
ergy.

%'e start by evaluating the ground-state energy Eo
and wave function I yo) of the system. With these quan-
tities known, the correlation functions can be easily cal-
culated with very good precision.

The ground-state properties are obtained by a modi-
fied Lanczos method. The method consists of the fol-
lowing steps: (i) Take a first approximation po to the ex-
act ground-state wave function yo, such that &po I yp&AO;
(ii) by operating with H on po, generate an orthogonal
state $0, (iii) take a linear combination P~ of Pp and Po as
a variational state and minimize the energy; and (iv) re-
peat steps (i)-(iii) with use of the improved state p ~

un-
til convergence is obtained. This method has been used
to evaluate the exact energy and wave function of an an-
isotropic spin- —, Heisenberg chain with 24 sites, which
shows the power of the algorithm.

To obtain the dynamical correlation functions, we
define
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The real part of the dynamical susceptibilities can also
be obtained directly from Gz (Z) without use of the tedi-
ous procedure given by the Kramers-Kronig relation.
The resolvant G~ (Z) is written in the form of a contin-
ued fraction:

G~(Z) =
Z ap

&yo I & t&
I yo&

b

Z ai Z I 4 0

The coefficients a„and b„can be evaluated from the mo-
ments p„=&go I

A H"A
I yo&. However, for large sys-

tems the moments increase rapidly with n, and the
method is very sensitive to nUmerical errors. %'e found
it convenient to evaluate the coefficients by a projective
technique developed for the memory-function formal-
ism. The advantage of this method is that it avoids the
use of recursion relations for the moments. The method
can be summarized as follows: (1) Define the state

I fo& =2
I yo&; (2) generate a set of orthogonal states

with the relation

If.+i& =H lf. & a. If.&
--b' If.- |&;

and (3) evaluate the coefficients a„and b„:

a, =&f. I
H

I f.&/&f, I f,&,

b.2+& =&I.+& If.+)&/&f. I f.&, ho=0.

(7a)

(7b)

H = g —t (C;tC;+1+C~~|C;) +Gn; n;+ ~, (8)

With this procedure we can evaluate a large number of
coefficients a„and b„and construct the continued-
fraction expression for G~(Z). Since we are dealing
with large but finite systems the Green's function G~ (Z)
has a finite number of poles, and the procedure described
above allows us to evaluate all the poles accurately.

To test the method, we have calculated the density-
density correlation function for a one-dimensional model
of spinless fermions. The Hamiltonian is given by

where C;~ creates an electron at site i, and n; =C; C; is
the number operator. We consider a half-filled band and
assume periodic boundary conditions. This model can be
mapped into an anisotropic spin- 2 Heisenberg model.

In this system we can distinguish two opposed regimes:
(a) When G/2r (1, the system is conducting and, for
N ~, the excitation spectrum is a gapless continuum.
(b) When G/2t ) 1, the system exhibits a charge-
density-wave ground state. There are two sublattices A
and 8 such that &n;& ( —,

' in 2 and &n;&) —,
' in 8. For

the ground state is doubly degenerate and
separated by a gap from a continuum. In this strong-
coupling regime, the two degenerate ground states diAer
in the phase of the charge-density wave. The lowest ex-
cited states correspond to a soliton-antisoliton pair.
Each pair increases the energy by an amount of the or-
der of 6, and so the spectrum consists of bands centered
at 6, 26, 36, . . . .

We have calculated the correlation function C„(k,co)
defined as the Fourier transform of

C„(k,t —t') =&nq(t)nk(t')&,
with

np=N '"+le '"'(n, ——,
' ). (10)

For 6 =0 the model is easily solvable and the correlation
function is given by a superposition of 8 functions of the
form 8(ek+~ —

e~
—co), where e~ = —2t cosp, with

p =2xn/N. We have evaluated the correlation function
in this limit with the method proposed above for systems
of diA'erent sizes (N(18). The numerical errors de-
pend on the value of k and on the number of sites ~V.

However, the largest error, obtained for N =18, is small-
er than 2%. For 6&0 we have performed direct diago-
nalization of systems with %~ 10 and used the spectral
representation of Eq. (2) to compare results.

In Table I the positions and residues of the poles for
% ~ 10 and 6 =21 obtained with our method are com-
pared with the results obtained by direct diagonalization
(for N=10, see Miiller er al. ). We found that our re-
sult and the exact one coincide within the first five
significant digits (see Table I). We have tested the

TABLE I. Poles and weights for different chain lengths. co; is the energy of the particle-hole
excitation. A; is the weight of the co; excitation. Except for the figures denoted with an aster-
isk, our results coincide at least within the first five significant digits with the exact ones. The
largest error is obtained for the pole with very small weight; direct diagonalization results for
this pole are m =6.94834 and A =0.00478.

Poles and weights

10

1.3695
4.6298
0
3.4392
0.8465
5.0676

5.8416
0.2544
2.6021
2.1132
4.1533
0.6924

4.5057
0.1652
6. 1266
0.0650

5.7314
0.1152

6.9476*
0.0049*

3000
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tensities are very small and cannot be appreciated on the
scale used in the figure. The results show that there is a
"band" of excitations centered at G. This band is nar-
rower for k =7r/2 in agreement with analytical approxi-
mations obtained in the strong-coupling limit of infinite
systems. ' In agreement with the obtained results, the
analytical strong-coupling approximation predicts ab-
sorption peaks around co =nG, n = 1,2, . . . , whose inten-

sity decreases as n increases. For k =x a line is obtained
for co=0 since the operator nk with k =z connects the
two degenerate ground states.

The results shown in Figs. 1 and 2 are calculated with

use of 25 coefficients a„and b„. In the frequency region
of the figures (ro/r ( 12) the results are not sensitive to
the number of coefficients used for n~ 20. Similar re-
sults are obtained for N =18.

All the results presented in Figs. 1 and 2 were ob-
tained after =5 h of central processing unit (CPU) time
on a VAX 11/780. The method presented here requires
only a fraction of the time needed for the Monte Carlo
simulation and gives essentially exact results. We should
mention that most of the CPU time is used to construct
the ground state. Once the ground-state wave function is

obtained with good accuracy (=10 ) all correlation
functions can be easily calculated with moderate compu-
tational time.

In summary, we have presented a method to compute
real-frequency correlation functions in finite systems at
zero temperature. The method allows us to compute ex-
act numerical results and is appropriate for the study of
the dynamics of spin systems and fermions in a lattice.
We have demonstrated that explicit calculation of the
coefficients of the memory function provides a computa-
tionally efficient method of evaluating correlation func-
tions.

Reasonably large systems can be studied. With our
computing facilities, the dynamical properties of spin- 2

Heisenberg systems with N ~ 24 can be evaluated in

moderate computing time. For larger systems, larger
and faster computing facilities would be required. How-

ever, in strong-coupling limits, good approximations can
be obtained by a pruning of the Hilbert space. This ap-
proximation would allow us to study larger systems with

a good accuracy in the dynamical properties at low fre-

quencies.
The method is easily generalized to calculate correla-

tions (A t(t)B(t ')) for any pair of observables A t and B
and, once the ground-state properties (

~ yn) and Eo) are
known, all correlations can be obtained with a small
computational eff'ort.

Finally, as a side conclusion, we may say that Monte
Carlo simulation gives quite good qualitative results in

the strong-coupling limit of the spinless model of Eq.
(8). However, the method presented here provides a way
to obtain exact numerical results in less computing time.

Now that we have achieved an accurate method for
the evaluation of the dynamical properties of finite sys-
tems, the next goal in the numerical studies of quantum
many-body systems would be development of a theory
for the finite-size scaling of such properties.

We are indebted to R. Barrachina and C. Wiecko for
bringing Refs. 6 and 7 to our attention. One of us
(E.R.G.) is supported by the Consejo Nacionale de In-
vestigaciones Cientificas y Tecnicas, Argentina.

'J. E. Hirsch and J. R. SchrieAer, Phys. Rev. B 28, 5353
(1983).

E. C. Behrmann, G. A. Jongeward, and P. G. Wolynes, J.
Chem. Phys. 79, 6277 (1983); D. Thirumvalai and B. Berne, J.
Chem. Phys. 79, 5029 (1983).

H. B. Schutter and D. J. Scalapino, Phys. Rev. Lett. 55,
1204 (1985), and Phys. Rev. B 34, 4744 (1986).

4E. Dagotto and A. Moreo, Phys. Rev. D 31, 865 (1985);
E. R. Gagliano and S. Bacci, Phys. Rev. D 36, 546 (1987).

~E. R. Gagliano, E. Dagotto, A. Moreo, and F. Alcaraz,
Phys. Rev. B 34, 1677 (1987).

6R. G. Gordon, J. Math. Phys. 9, 655 (1968).
G. Grosso and G. Pastori Parravicini, in Memory Function

Approaches to Stochastic Problems in Condensed Matter,
edited by M. W. Evans, P. Grigolini, and G. Pastori Parravi-
cini, Advances in Chemical Physics, Vol. 62 (Wiley, New

York, 1985), p. 133.
8J. des Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384

(1966).
G. Muller, H. Thomas, M. W. Puga, and H. Beck, J. Phys.

C 14, 3399 (1981).
' N. Ishimura and H. Shiba, Prog. Theor. Phys. 63, 743

(1980), and references therein.

3002


