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Nonlinear Wave Propagation in Fermi Liquids with Resonant Excitations across an Energy Gap:
Application to Superfluid 3He
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The propagation of waves in a superfluid Fermi liquid is discussed in the quasiclassical regime on the
basis of a nonlinear kinetic equation. We show that the dominant nonlinearity appears in the distribu-
tion function (rather than the mean fields) due to resonant excitations across the gap in a small regime
of momentum space. The dynamics of these resonantly excited quasiparticles is governed by a Bloch-
type equation for a pseudospin vector in particle-hole space. We consider saturation effects and soliton
formation in the sound propagation in He-A in some detail and comment briefly on the B phase.

PACS numbers: 67.50.Fi, 42.50.Qg, 51.10.+y

It is well known that wave propagation in a nonlinear
medium, containing, e.g. , localized two-level systems
which may be resonantly excited by the wave, exhibits
striking nonlinear eff'ects such as self-induced trans-
parency and possibly soliton formation. ' The only essen-
tial condition for the existence of these phenomena is the
coherence of excitation and recombination processes at
the two-level systems. It is therefore natural to ask
whether such phenomena may occur even in a single-
component system, i.e., when the propagating wave and
the local excitations are part of the same many-body sys-
tem, under conditions where there exist excitations of
nonzero energy at zero momentum. Possible candidate
systems are semiconductors, where excitations across
the energy gap may play the role of the two-level sys-
tems, superfluid neutral ' or charged Fermi liquids with
the possibility of excitations across the gap, or collective
excitations in anisotropic superfluids. In this Letter we
consider specifically a neutral anisotropic superfluid Fer-
mi liquid, He-A, both because (i) there are some exper-
imental data available for this system and because (ii)
nonlinear eN'ects are present already at sufficiently low
frequencies such that collective order-parameter excita-
tions may be neglected (in the seemingly simpler 8 phase
the coupling to collective order-parameter Inodes is all
important). Much of the discussion and the mathemati-
cal formulation, however, carries over to any other sys-
tem of this general type.

In superfluid He, quasiparticles are bound into Coop-
er pairs, thus introducing an (anisotropic) gap Ag into
the single-particle spectrum, Etr=(gk+Ag+hq) ', where
gk =k /2m* —p is the normal-state quasiparticle ener-
gy. An external field of frequency co and wave vector q,
e.g. , coupling to the density, will (i) excite particle-hole
pairs of energy &Fvh =Et,+qg2 E~ zt2 and (ii) break—
Cooper pairs into a pair of quasiparticles of energy

Fpp E&+q/2 +E —&+q/2. As a function of external field
strength one should expect nonlinear eA'ects to appear

first in the distribution of resonantly excited quasiparti-
cles, i.e., for momenta such that &F-ph or +F-pp is equal to
an external field quantum Aco. The nonlinearity will be
strongly aA'ected by the coherent recombination of an ex-
cited pair. This is where the two-level analogy comes
into the picture. Coherent recombination may be spoiled
by collision processes, which can be reduced sufficiently
by working at lower temperature. Even in the absence of
collisions coherence may be lost by the partners of the
excited pair if they are drifting away from each other for
distances along q comparable to or greater than the
wavelength of the exciting wave.

An additional nonlinear mechanism is due to the possi-
bility for excited pairs to oscillate in the potential wells
formed by the wave. The corresponding oscillation fre-
quency is proportional to the square root of the wave am-
plitude. This requires the resonant pair to move phase-
locked with the wave. The eA'ect of quasiparticles' drift-
ing out of the resonant region has also been considered.
It may be shown that for normal liquid He nonlinear
behavior of the former kind sets in only at relatively
high power levels. Moreover, in the case of sound
waves in liquid He, which we will consider exclusively,
particle-hole pairs are not excited resonantly as the
sound velocity is much greater than the Fermi velocity
(this is different for spin waves). The most likely reso-
nant excitation process in superfluid He is therefore the
coherent excitation and recombination of Cooper pairs.
In special circumstances these processes may be strongly
coupled to the collective dynamics of the order parame-
ter. We find that a number of interesting nonlinear phe-
nomena occur already at relatively low power levels.

In the following we briefly sketch the derivation of the
equations of motion describing the nonlinear time evolu-
tion, discuss the method of solution employed, and
present some results. A more detailed account will be
given elsewhere. We start from the matrix kinetic
equation for the distribution function nt, in particle-hole
space (see, e.g. , Wolfle' ),

i B,nk(t, r)+ [ek(t, r),n] ——
~ i [Skag, 8,a]++ 2 i f&,e, 8kn]+ —

—,
' [B„e,8kn] —=iIk(t, r),
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which completely describes the nonlinear dynamics of
the system in the quasiclassical regime (co« eF, q «kF).
The additional simplifications we use are the replace-
ment of the collision integral Ip by a linear relaxation-
time expression, and the usual linear expressions for the
quasiparticle energy ek. The brackets in (1) denote
commutators and anticommutators, respectively.

In the regime of low excitation intensity, both nj, and
ep may be linearized about their equilibrium values. The
resulting equations have been solved, e.g. , for the case of
sound propagation in He-A or He-B. The calculated
sound velocity and attenuation are generally in good
agreement with experiment. ' As the power level of the
sound waves is increased, first the quasiparticles which
are resonantly excited by the sound wave (to =2Ek) will

be driven out of the linear regime. It is that "resonant
part" of the distribution function which we must de-
scribe in a more complete way. The quasiparticles out-
side the resonant regime in k space may still be treated
in linear approximation. The width of the resonant re-
gime, ~F.I„ is roughly equal to the band width of exciting
frequencies. Since in experiment nonlinear wave propa-

gation is usually studied with use of relatively short
pulses (length z) in order to avoid excessive heating, the
resonant regime may be estimated by &Fk- I/z.

In the resonant regime it is advantageous to rewrite
(1) in the form of a Bloch equation, which shows the
physics of pair excitation and recombination more direct-
ly. To this end one performs a Bogolyubov transforma-
tion of (1) onto Bogolyubov quasiparticle states. The
nonequilibrium Bogolyubov quasiparticle distribution
function may be written as fk= 2 (1+wktk), where
tk=tanh(Ek/2T). The function wk is equal to —1 in the
ground state and equal to +1 for the excited state of a
Cooper pair (k, —k). This suggests that we identify wk

with the third component of a pseudospin vector Sq,
Sk3 =wk (equal to the spin polarization). In terms of the
components n;~. of the original distribution function,

Sk3 (I/tkEk) ln12~k +~kn21+ (k(nl j n22)i

(the quantities n;J, d k are spin matrices). The off'-

diagonal components of the Bogolyubov-transformed
matrix distribution function describe transitions between
the ground and excited states and can be identified with
the transverse components of the pseudospin vector, i.e.,

sk, l
= ( I &k I /tkEk) I(gk/ I &k I ')(»2~k +&kn2i) («i n22) j,

and

sk 2 =(—i/tk I hk I )(ni2hk+ —hkn21).
nant regime, i.e.,

Note that Sg+ =Si, i + iSg 2 are the amplitudes for ex-
citation and recombination of Cooper pairs. The re-
maining component of the distribution function does not
couple in the limit of wave vector q 0. In the absence
of relaxation processes the length of the vector Sk is con-
served, Sk =1. The evolution of the state of the system
in time is hence described by a trajectory on the surface
of the unit sphere. The vector Sk=(Sk|, Sk2, Sk3) obeys
the "Bloch equation"

BSk/Bt =Hkx Sk —C, (2)

where the components of the vector C are given by

Sk, /T2, Sk,/T2, (Sk, + I )/Ti, and Tj and T2 are the lon-

gitudinal and transverse relaxation times, respectively.
In writing (2) we have neglected all gradient terms. It is

possible, however, to include part of the gradient terms
in Hk. Equation (2) describes those states which act
like localized two-level systems with respect to the prop-
agation direction q of the exciting wave. For this to be
true, we require that the two partners of an excited
Cooper pair do not drift away along q farther than a
wavelength during a characteristic time, r*, given by the
collision time T2 or the pulse duration T:, whichever is
shorter. Alternatively, and equivalently, we may ask
that the momentum q transferred by the phonon in the
pair-breaking process be less than the width of the reso-

q «AF-k/q VkEk

= [v z* (q. k) (1 —4a2/to ') 't'] (3)

P(k I) = (k. I) —((k. I) Rek )„/(Rekk)„-.

This condition, which characterizes the "two-level re-
gime, " is obviously always satisfied for quasiparticles
traveling perpendicular to q and/or at the pair breaking
threshold, where to =26k. Quasiparticles which have
been resonantly excited but do not satisfy the above con-
dition are "kicked out" of the resonance regime and can-
not recombine coherently. These quasiparticles eventu-
ally recombine via collision processes. The above discus-
sion shows that the omission of the gradient terms in (2)
is justified within the two-level regime.

We now consider a sound pulse of frequency n«260
and wave vector q in He-A propagating along 1, the gap
axis. In this case none of the collective order-parameter
modes discussed by Wolfle" is excited. The effective
magnetic field Hg consists of a static field component
Hg3 =2Eg, providing the resonance frequency, and an rf
field perpendicular to it. The rf field is proportional to
the relative amplitude of the density oscillations bp
=6p/po associated with the sound wave (po is the equi-
librium density), i.e., Hki =2hk6p, Hk2=0. The energy
hk is given by hk=4eF(hk/to)P(k 1), with the angle-
dependent coupling
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((), —c (m)&, ) pE= —(9a) (2P'e )(„dg„(&+2E„)E„P(k))E,)„..

The linear dispersion parts have all been collected into the renormalized sound velocity c(())), which contains the
correct sound dispersion in the linear regime (see Ref. 10). The coupling to the resonant part of the distribution func-
tion, Sh, is inversely proportional to the Landau parameter Fo (in the regime Fo)) 1).

In order to solve the Bloch equations (2) it is necessary to separate the fast wavelike motion from the slow changes in

the envelope function. This is achieved by introduction of the vector S =(u, v, w) in the rotating frame as

(4)

S —=St() ~iSh2 = [up(t, z) ~ivy(t, z)]exp[ —i [cut —Qz+p(z, t)]j,

Here Xh is the Cooper pair susceptibility defined in Refs. 10 and 11, and the angular brackets denote an average over
the Fermi sphere.

The nonresonant parts of the distribution function obey linear wave equations or oscillator equations, with the reso-
nant parts acting as driving terms. In the special case considered one needs only one additional variable, or mean field,
the relative density change Bp, which obeys the wave equation

and

vh =+hhRwhT2L (h(2)),

w„= —1/[1+ T,r,],
(5)

where L(i)kco) =1/[1+(i(krt)T2) ] and I h is the rate for
induced transitions, defined by I h=(hltR) T2L(hto).
Note that I ~ is proportional to the intensity of the wave.
The first component ug is odd in Aco and leads to small
corrections only.

We now substitute the result (5) into (4) and separate
into in-phase and out-of-phase components. The power
absorption is calculated from the out-of-phase com-
ponent of (4) by multiplying with Sp and integrating
over all times. One finds the absorption coefficient as

a = —, Q(1/Fo)(Immi P (k 1)[1+T Tq()h&R) ] ' )i„

(6)

where Q=tt)/ci and ci is the velocity of first sound. In
the limit of low intensity, where I i 0, (5) reduces to

Sp =R(t,z) cos[t()t —Qz+p(z, t)].
Here Q is the renormalized wave vector, and (/)(z, t) is a
phase function, which in principle affects the pulse form.
In the case considered we may put p =const. We expect
the in-phase amplitude ug to contribute to the dispersion
(thereby renormalizing the wave vector), and the out-
of-phase amplitude vg to determine the attenuation.
Also, the normalization condition g g + v g + wg = 1 holds.
The resulting differential equations for u, v, w now have
to be solved near resonance, i.e., for h, co=2Eg —m=0.
In general this can only be done numerically. However,
there are two cases of interest where an analytical solu-
tion is possible: (i) an "incoherent" regime for r) Ti 2,

where collisions provide the limiting factor, and (ii) the
fully coherent regime where r((T& z.

In the incoherent regime (see also Ref. 1) the pseudo-
spin vector in the rotating frame is in a stationary state.
The solution, obtained from (2) by dropping the time
derivatives of u, v, w, is given by

the known result, expanded to first order in the quantity
Imkg, which describes the pair breaking. This is correct
as long as co«A. For sound wave intensity [energy/
(area) x (time)] exceeding the threshold value

Ithr= 2 wpoclRthr h (Foctpo/6eFT2Ti),

the sound absorption decreases proportional to (intensi-
ty) 't . This result holds for arbitrary orientation of q
and 1, as long as collective modes are not excited reso-
nantly. Such a behavior has been observed in experi-
ment.

In the coherent regime, i.e., for pulses short compared
to the collision times T],T2, one can derive a differential
equation for the "area" variable A defined by A(z)
=I dt hoR—(z, t), which describes the evolution of the
pulse area ho=hi, (k=1). To this end one integrates the
out-of-phase component of (4) over time. Using the
solution of the Bloch equations known from the optical
resonance problem, ' one finds B,A (z ) = —

& at;„
x sinA (z ), where at;„ is the contribution to the sound
attenuation coefficient in the linear limit coming from
the two-level regime (3). For sound pulse energies per
area exceeding the threshold value Eth, /F = tr h
x (Focipo/6(.'Fr) nonlinear behavior occurs. First, main-

ly quasiparticles outside the two-level regime are reso-
nantly excited. Once these states are depleted, the dy-
namics is governed by the coherent resonance processes
within the narrow band of two-level states. If the
remaining pulse area is larger than z, a 2x solitary wave
is formed. The envelope function for the density change
in the soliton is given '

by

R (z, t ) = (2/r ho) sech [(t —z/vo )/r],

with a group velocity vG =ci/(1+ —,
' zat;„ci). Note that

ci/vG is a linear function of r, as a consequence of the in-
homogeneous broadening, i.e., the continuous distribu-
tion of resonance frequencies 2E|,. The soliton solution
depends crucially on hp being independent of the direc-
tion of k within the resonant two-level regime (Ei,
=c()/2). This is only the case for sound propagation
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direction q parallel to 1. For other orientations the
strength of the "rf field" h j, varies with k, i.e., in
different portions of the resonant regime Sk is rotated by
varying amounts, which makes it impossible for the
different Sk's to return simultaneously to the initial state,
as required for a 2n-soliton solution.

However, the saturation eA'ect in the incoherent re-
gime discussed above still exists even for q not parallel to

r =tanh (co/4T)(q. l) [1 —(q I) ]f(to —coo) +1/To]/Ao,

l. In particular, it is found that in the case that a collec-
tive mode (clapping or flapping mode) is excited (co

=too —hp), leading to broad attenuation peaks as a
function of temperature or frequency in the linear re-
gime, the absorption in the wings of the peak decreases
a:(intensity) 't for sufficiently large sound intensities.
We predict a sharp collective peak of width 1/To to
remain, provided the sound intensity is well in excess of
the threshold given by Ith„reduced by a factor

~here To is of the order of T2. This picture holds as

long as nonlinear behavior of the collective variables may
be neglected.

In the 8 phase, the situation is more complicated,
since the two-level regime for direct excitation of Cooper
pairs has too little weight. However, Bogolyubov quasi-

particles may be excited indirectly via a collective mode

at the pair-breaking edge with frequency coo+ =25,. This
mode in turn may be strongly excited by coupling to the
second harmonic of one of the undamped collective
modes in the gap (real squashing mode), which at high

pressures happens to have a frequency F2+=1.018. In

fact, nonlinear behavior of sound propagation reminis-

cent of self-induced transparency has been seen in exper-
iments probing the frequency regime in the neighbor-

hood of the real squashing mode. ' We can explain the

qualitative features observed, like the initial rise in sound

attenuation as a function of intensity, the nonlinear

broadening of the attenuation peak, and the dependence
of the group velocity of the solitary pulses on the pulse

length r.
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