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The anisotropic temperature relaxation rate is obtained from the measured time evolution of 7T, and
Ty in a magnetized plasma consisting of only electrons. The velocity-space anisotropy is induced by an
essentially one-dimensional compression (or expansion) which changes 7 but not T.. T. and T are
then measured as they relax to a common value. The relaxation rate is obtained as a function of plasma
density and temperature. Good agreement with collisional Fokker-Planck theory is found over a range

of two decades.

PACS numbers: 52.25.Wz, 52.25.Dg

The collisional scattering in velocity space of a system
of charged particles is a fundamental process in plasma
physics. A few examples where this process can dom-
inate are the equipartition of energy among the various
degrees of freedom in a plasma, the scattering of charged
particles into a specific region of velocity space (the loss
cone of a magnetic mirror, for instance), and the
momentum exchange between electrons and ions (resis-
tivity). A theoretical description of collisional velocity
scattering has been the subject of continuing effort over
the past fifty years. Small-momentum-transfer col-
lisions are thought to dominate, a view which has led to a
Fokker-Planck approximation to the velocity-scattering
process. !~ Many important theoretical results have been
obtained with this approach. However, there have been
only a few direct experimental tests of the theory,!®!!
and these tests have uncertainties of order unity.

In this paper we describe a simple and direct experi-
ment which measures one specific case of collisional ve-
locity-space transport: the rate of anisotropic tempera-
ture relaxation in a magnetized pure electron plasma.
The anisotropy is characterized by 7, and T, the tem-
peratures perpendicular and parallel to the applied mag-
netic field. Our experimental apparatus is particularly
well suited to create and to measure accurately the relax-
ation of this anisotropy. We induce the anisotropy by
accomplishing an essentially one-dimensional compres-
sion (or expansion) of a quiescent plasma which is ini-
tially isotropic and Maxwellian in velocity space. T
changes while T, is unaffected. We then obtain the re-
laxation rate from measurements of the time evolution of
T, and T) as they relax to a new common value. We
obtain the rate for various plasma densities and tempera-
tures. Our measured rates span two decades.

Fokker-Planck theories of collisional velocity-space
transport have been obtained by many workers in both
the nonmagnetized>*® and magnetized regimes.>"8
Ichimaru and Rosenbluth’ (IR) calculate the rate of an-
isotropic temperature relaxation in a weakly magnetized
one-component plasma for which the Larmor radius r is
much larger than the Debye shielding length Ap, i.e.,

r.>Ap. They employ the “dominant-term” approxima-
tion,? which neglects all terms that do not contain the
Coulomb logarithm factor InA in the rate. Since terms
of relative order 1/InA are neglected, the theoretical rate
is calculated only to that accuracy, which in our plasma
is about 10%.

We can adapt the small-magnetic-field calculation of
IR to our experimental regime of r. <Ap by using a gen-
eral result of Montgomery, Joyce, and Turner® (MJT).
MJT have shown that, to good approximation, zero- and
small-magnetic-field transport theories can be applied in
the regime r <Ap if the argument of the Coulomb loga-
rithm is changed from A=Ap/b to A=rr./b, where
b=e?/T is the classical distance of closest approach.
This change can be thought of as a decrease in the range
over which effective collisions can occur. The effect of
the MJT approximation in our experimental regime is to
reduce the theoretical rate of IR by approximately 25%.

When we compare our experimental results with the
predictions of this theory we find agreement to within
approximately 10% over a two-decade range. This is an
absolute comparison, since there are no adjustable pa-
rameters in either the theory or the experimental mea-
surements.

A simplified schematic of the experimental device,
which has been previously described,'? is shown in Fig.
1. It provides a stable, confined, pure electron plasma.
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FIG. 1. Simplified schematic of the cylindrical plasma

confinement device.
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The apparatus consists of several coaxial conducting
cylinders in an ultrahigh vacuum (2x10~!'! Torr) im-
mersed in a uniform axial magnetic field B,. The mag-
netic field provides a radial confinement, and negative
potentials applied to cylinders G; and G, provide axial
confinement. The parameters of a typical plasma are
density n=107 cm 3, length L =30 cm, temperature
T=1 ¢V, and B, =280 G. In this study we have investi-
gated the parameter range 3x10°<n<3.5x107 cm ~3
and 0.7 eV < T =< 8.5 eV. The confinement properties of
this type of pure electron plasma device have been exten-
sively studied.'>"!” For the purposes of this experiment,
the long confinement times (much longer than any other
time scale of interest) are important, in that they allow
the thermal-evolution experiments to be conducted at
constant energy and density. The collisional scattering
effects due to background neutrals (densities =10%/cm?)
are negligible.

We operate the device cyclically: inject; manipulate;
dump and measure. To inject the plasma, the inject cyl-
inder G; is switched to ground, L; and L, are grounded,
and the dump cylinder G, is set to a negative potential,
allowing the formation of a column of electrons extend-
ing from the negatively biased filament to G4. The po-
tential on G; is then switched negative to capture the
electrons in L, and L,. (It is also possible to capture the
electrons in L or L; separately.) We allow the injected
plasma to equilibrate thermally. We then apply poten-
tials to L, or L to compress or expand the plasma axial-
ly, which induces the initial velocity-space anisotropy.
After allowing the initial anisotropy to evolve for a time
t, we dump the plasma axially by grounding G,. All
measurements of the plasma temperatures and densitv
are made at the time of dump. We construct the ti....
evolution of the anisotropy from a number of machine
cycles of varying evolution time ¢. This relies on shot-
to-shot reproducibility, which is generally better than
1%.

We obtain the plasma density, n(r,z), by dumping the

QW =0r . dELf_, oo e dE S EDEE L.

The average perpendicular energy of the electrons is then
easily obtained as

BQ(VA,)’)/BY
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which is independent of V4. If g(E ) is Maxwellian,
then (E(r,t))=T(r,t).

Alternatively, we can measure the parallel tempera-
ture of the confined plasma by collecting the electrons
which are energetic enough to escape past the confine-
ment potential ¥V, applied to G4 as this potential is slow-
ly made less negative. If the escaped electrons had a dis-
tribution of parallel energies f(E;)xexp(—E/Tc)

2976

plasma axially, then measuring the total charge Qr
which streams through the collimator hole and onto the
collector. Repeating this with the collimator at varying
radii gives Qr(r) = —ed,fdzn(r,z), where A, is the
area of the hole. We are able to undo this z integral to
obtain n(r,z) by assuming that the electrons are in ther-
mal equilibrium along each field line separately, i.e.,

n(r,z)=n(r)expl—ep(r,z)/T(r)],

where ¢(r,z) is the potential. Given the known bound-
ary conditions for ¢ and the measured quantities Qr(r)
and T(r), we solve Poisson’s equation self-consistently
for n(r,z) and ¢(r,z). For comparison to theory, we
measure n(r,z) after the evolution is completed and then
calculate the average density for collisional interactions,
as i(r)=[fdzn?(r,z)/fdz n(r,z).

We obtain the perpendicular temperature, 7, (r,z), of
the plasma by performing parallel velocity discrimina-
tion on the dumped electrons as they pass through a
secondary axial magnetic field, B;, added to B,.'®!° The
plasma disassembly process changes the electron parallel
energy to a value of F, which is dominated by the con-
version of space-charge potential to kinetic energy. The
electron perpendicular energy, E |, is left unchanged by
the disassembly, as a result of the conservation of the
electron gyromagnetic moment, u=F /B, in the con-
stant field B =B,. After the electron has entered the ad-
ditional secondary field (B=B;+B,), conservation of
both u and total energy has caused the electron paral-
lel energy to change further by an amount AE; = —(y
—1)E ., where y=(B;+B,)/B,. The electron parallel
energy well within the analyzing cylinder is then
Ey—(y—1)E.. We measure Q(V4,y), the charge of
all electrons which have sufficient parallel energy to pass
through the analyzing cylinder held at potential V4, as a
function of ¥4 and y. We assume that the dumped elec-
tron energy distribution function is separable (the
disassembly process tends to wash out perpendicular and
parallel energy correlations), and write Q(V 4,y) as

(1

when confined, then the escaping charge will vary initial-
ly as

[Q(Vd)] _ldQ(Vd)/dVd= — (eT“f) -1 (3)

This relation is valid only as long as the plasma potential
remains essentially unchanged, i.e., only until about
10 ~* of the total charge has escaped. Because of this re-
striction, the measured temperature 7T is characteristic
of the energetic tail of the distribution (hence the sub-
script “€”’), and, furthermore, can be measured only on
the axis. However, when we measure both 7. and (E ,)
for a plasma equilibrium, we typically obtain T =(E ,)
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=T ¢q to within 5%.

We now describe how the relaxation rates are ob-
tained, using one experimental data set for illustration.
All of our rates are obtained from temperatures mea-
sured on the axis. In Fig. 2 we show the measured time
evolution of (Ey) and T Initially the plasma is cap-
tured in cylinder L,. It is allowed to evolve to an
isotropic temperature 7 =1.47 eV, and to a density
profile which is essentially constant over the area of the
collimator hole. At ¢t =0, we expand the plasma into L,
by ramping L; to ground on a time scale much longer
than the axial bounce time yet much shorter than the
collision time. The expansion thus preserves the adiabat-
ic bounce invariant J =§v” dz. Ideally, the result would
be a one-dimensional expansion with 7'y changed by the
ratio [L,/(L,+L;)]?% and T, unchanged. In practice,
the plasma lengths are not exactly equal to the cylinder
lengths, and T, is slightly changed since the expansion
requires some finite fraction of a collision time to com-
plete. This does not materially affect the net result,
which is the creation of an anisotropic temperature dis-
tribution 7, > T,. We then measure (E,(z)) and
T)(¢) as they relax towards the common equilibrium
value of Tq=1.08 eV.

From the observation that (E , (z)) and T(¢) become
constant at large ¢, we deduce that energy sources or
sinks may be neglected during the relaxation, i.e.,
sT()+ 3T.(t)=Te. We thus can write the rate
equations of IR as

d(T L —Te)/dt =—v(T L — Teq), (4a)
and similarly
d(Tn_Teq)/dt = — V(Tu—Teq), (4b)

where v(n,T 1, Teq,B;) is the common relaxation rate. v
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FIG. 2. Data showing the creation and subsequent relaxa-
tion to equilibrium of an anisotropic temperature distribution.
The expansion which creates the anisotropy begins at t =0 and
lasts for 1 msec. The solid lines are least-squares fits of the
model to the data points.

can be put into the form v=vh(T ./T¢q), where v is the
relaxation rate in equilibrium, and A(T l/Teq) is a
correction factor [A(1)=1] for the degree of anisotro-
py.” In our experiments the correction is always small.
The theory of IR predicts

v="=%(x/m,) l/zﬁe“lnA/T;{z. (5)
For comparison, we note that v= % Veq, Where
Veq=4(n/m.) *fie*InA/3T 3

is the Spitzer rate of energy equipartition® between an
isotropic Maxwellian electron plasma and a Maxwellian
distribution of test electrons. For comparison with ex-
perimental results, we modify InA in Eq. (5) as per MJT.
Although Egs. (4a) and (4b) were derived only for
Maxwellian distributions, we substitute (£ ,) for T, and
T for T,. We make a least-squares fit to the (£, (¢))
and T (¢) data independently using the general solution
to Egs. (4a) and (4b) as the model, and we display the
results as the two solid lines in Fig. 2. The {E,) data
yield a rate v, =121 sec ~!, while the T, data yield a
rate vy =79 sec !, which is significantly lower. This can
be understood from the energy dependence of the two-
charged-particle (Coulomb) cross section, wherein the
cross section decreases as (energy) ~2. Since v is some
measure of the collisionality of the energetic tail of the
parallel distribution, it is not surprising that vy is less
than v,, which is measured over the entire perpendicular
distribution. Since we believe that (E ,)=T, is a much
better approximation than T.=T, during the relaxa-
tion, we obtain our v results from (£ ) evolution only.
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FIG. 3. Experimentally measured relaxation rates v for
various electron plasma densities and temperatures. The solid
line is the absolute prediction of theory. Solid symbols have
statistical errors of =3%, open symbols =15%. B, is 281 G.
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In Fig. 3 we display the comparison between our mea-
sured rates and the theory IR as modified by MJT. On
the abscissa is the expected parameter scaling and on the
ordinate is the relaxation rate v. Most of the data points
have error bars of =15%. A recently adopted noise-
reduction technique has allowed the measurement of a
few points with =3% error bars; these are displayed as
solid symbols in Fig. 3. B, was held fixed at 281 G for
all points. The solid line is the prediction of theory and
there are no adjustable parameters. A weighted least-
squares fit to the measured rates with use of v(fit)
=qv(theory) gives a==0.95. This would give a line
about 5% below the theory line in Fig. 3. Since the
theory is calculated to an accuracy of approximately
10%, we regard the measurements and the theory as be-
ing in very good agreement.

We do not believe that collective instabilities have
significantly contributed to our measured rates, since the
agreement with theory is so good. An instability driven
by the temperature anisotropy could contribute to iso-
tropization. However, linear stability theory?° predicts
suppression of the Weibel or Weibel-type instability in
our parameter regime. Furthermore, the agreement of
measured rates from both the 7./Ty <1 and T,./T;>1
anisotropy data argues against significant isotropization
due to instability, since typically only one type of anisot-
ropy may lead to growth.

We wish to stress the point that our quoted errors
represent only statistical measurement errors. The possi-
bility of systematic errors also exists. We consider the
density and temperature calibrations to be * 5%. One
possible source of systematic error is the assumption that
both velocity distributions remain Maxwellian during the
evolution to equilibrium, i.e., {E ,) is substituted for 7',
in Eq. (4a). There may be other sources of error. We
believe that our aggregate systematic errors may be on
the order of 10%.

In summary, we have experimentally obtained the an-
isotropic temperature relaxation rate in a magnetized
electron plasma. The measured rate agrees over 2 orders
of magnitude with a theoretical calculation of that rate
in a magnetized plasma based on a collisional Fokker-
Planck-type theory of Ichimaru and Rosenbluth as
modified by Montgomery, Joyce, and Turner.
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