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The theory and first nonlinear simulations of the Rayleigh-Taylor instability in the limit of large ion
Larmor radius are presented. It is shown that in the limit of large Larmor radius, the Rayleigh-Taylor
instability evolves much faster and in a dramatically different manner than in the limit of small Larmor
radius.
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Interchange instabilities, such as the Rayleigh-Taylor
instability, have been the subject of intense scientific in-
terest for most of this century. ' Generically, an inter-
change instability can occur when two fluids of different
densities are accelerated. Although initially studied in

the context of hydrodynamic theory, this type of insta-
bility has also been shown to exist in magnetized plas-
mas. Subsequently, plasma interchange modes have be-
come an important area of research in the plasma phys-
ics community, and a considerable amount of work
(theoretical, experimental, and computational) has been
done over the past two decades. The bulk of the research
has been motivated by the fusion research program,
especially in regard to the stability of magnetically
confined plasmas and imploding laser target pellets.
However, there is also evidence that this type of instabil-
ity can occur in space plasmas. Thus, interchange
modes are relevant to a broad spectrum of plasma re-
gimes.

The study of the Rayleigh-Taylor instability in a mag-
netized plasma has largely been confined to the regime
p;/L«1 and ro/Q;«1, where p; and Q; are the ion
gyroradius and gyrofrequency, respectively, and co and L
are the frequency and length scales of interest, respec-
tively. Standard MHD theory can be used when kp;(&1
(where k is the wave number), while finite- Larmor-
radius MHD theory is used when kp; ~1. (Of course,
use of kinetic theory can remove all restrictions on the
value of kp;. ) However, space' and laboratory"'
experiments have observed plasma structure, apparently
caused by the rapid deceleration of a plasma expanding
into a strong magnetic field, in the parameter regime
p;/L»1 and co/Q; » 1 but p, /L «1 and co/Q, « l.
Similar structure has also been observed in earlier plas-
ma-expansion experiments' ' and in 0-pinch implosion
experiments' in the regime p;/L ~ 1 and co/Q; ~ 1. The
purpose of this Letter is to investigate, both analytically

and computationally, the development of the Rayleigh-
Taylor instability in the regime of large ion Larmor ra-
dius (i.e., p;/L»1 and co/Q;»1). We show that in this
regime the Rayleigh-Taylor instability develops much
faster and has a dramatically different nonlinear behav-
ior than the conventional Rayleigh-Taylor instability.

A set of one-fluid, modified MHD equations has been
derived which describes a plasma for arbitrary p;/L or

16, 17.

an/at+V nu =0,

nM du/dt = —T Vn VB /8 n+ B.VB—/4'+ nMg, (2)

as/at =V x (u x 8) —(Mc/e)V x du/dt,

as/at =vx(uxB) —v~(~xa)/ne, (4)

where u is the center-of-mass velocity, n is the density, B
is the magnetic field, M is the ion mass, and g is the
gravitational force. (With regard to plasma-expansion
experiments, we can identify the plasma acceleration
with an effective gravitational acceleration, i.e., duo/dt
= —g,s;) Equations (1)-(3) are derived directly from
the ion and electron Vlasov equations under the follow-
ing assumptions. We assume that (1) p, /L « 1 and
ro/Q, «1 (i.e., the electrons are strongly magnetized),
(2) the electron and ion pressure tensors are isotropic,
(3) the electron and ion fluids are isothermal with
T=T, + T;, and (4) the Debye length is very small. We
mention that (1)-(3) are similar to a set of one-fluid
MHD equations derived by Hassam and Lee' in the
limit T; =0.

The final term in (3) is what makes these equations
different from the conventional ideal MHD equations.
In this representation it is clear that ion inertia is the ori-
gin of this term and that it is potentially important when
co/Q;»1 (or p;/L»1). We also point out that (3) can
be rewritten as
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so that the new term can be identified as the Hall term.
To study the linear evolution of the Rayleigh-Taylor

instability in both the small — and large-Larmor-radius
limits, we consider the following slab geometry and plas-
ma configuration. We assume B=Bp(x)e„n =np(x),
and g=ge . The equilibrium is given by 9(npT

+Bp/8')/Bx =npMg .We perturb (1)-(3) about this
equilibrium and assume that perturbations are propor-
tional to exp[i(k~y —tot)]. We consider the "local" lim-
it and require k~L„&&1, where L„=(61nnp/Bx) ' is the
scale length of the density gradient. The dispersion
equation is given by'

z +(1+P)co
ky'&A Ln

t) lnBp p;+ (to —
k~ gI„)to =0,

inn p Ln ky Cs

where V& =B/(47rnM) 't is the Alfven velocity, C,
=(2T/M) 't is the sound speed, p; =C,/0;, and P
=8znT/B .

In the limit p;/L„~ 0 (i.e. , conventional MHD theo-

ry), we recover from (5) the magnetosonic modes [ro

=k~ Vp, (1+P)] and the usual Rayleigh-Taylor instabili-

ty [tp' = (g/L, ) (1 —rl InBp/t) lnnp) ]. Instability can
occur when g/L„& 0 with the growth rate yp

= (g/L„) 't .
However, when p;/L„»1, a faster growing mode can
occur which has a growth rate determined by co

=ky gL„."' Again, instability can occur when gL„&0
but the growth rate is y=k~(gL„) ' =k~L„yp, the turn-
on condition for this mode is (g/L„)(1 —tllnBp/81nnp)
& 0;/4. Interestingly, for a magnetically confined plas-

ma expansion in a low-P plasma, the turn-on condition is

independent of the magnetic field, which is consistent
with experimental observations. ' Of further interest is

the eigenmode structure. We note that when p;/L„»1
and to —k~C„ then tp/0;&&1 and the final term in (3)
will be large unless e, .Vxu 0. We use this fact in the
equation obtained by taking the z component of the curl
of (2) to get —iso(8np/Bx)u~ =ik~gn. From (1) we

obtain —itpn+inpk~u~+ (Bnp/Bx)u„=O. But since

e, - Vxu =0 we note that lkyQz 0 so that
—icpn+inpk~u~ =0. Thus, eliminating n and u~ from
these equations we get co =ky gL„. The crucial point is

that the fluid motion is primarily curl free and not diver-

gence free (i.e., Vxu =0 and V u =ik~u~~O) This.
represents a behavior quite different from the conven-
tional MHD Rayleigh-Taylor instability which is pri-
marily divergence free and not curl free (V u=O and
Vxu~O).

This contrasting fluid behavior can also be seen by
considering the following simplified ion momentum
equation in the limit T~ 0: nM dV;/dt =e(E+V;
x B/c). In the latter case, when to/0; &(1, the dominant

perturbed ion velocity is V; = —cE&B/c which is diver-

gence free. In the former case, when to/0; » 1, the dom-

inant perturbed ion velocity is V; =t'eE/nMtp which is

curl free. Thus, on the basis of this linear eigenfunction
we anticipate that the nonlinear behavior of the unmag-
netized and magnetized ion Rayleigh- Taylor instabilities
will be quite different.

We now confirm this suspicion by presenting results of
2D numerical simulations of the Rayleigh-Taylor insta-
bility in both the limit of small Larmor radius (i.e. , mag-

netized ions) and the limit of large Larmor radius (i.e.,

unmagnetized ions). We solve (1), (2), and (4) numeri-
cally on a Cartesian grid with resolution 125 x 100 (x,y).
We consider plasma motion only in the plane transverse
to the magnetic field (B= Be, ). H—ard-wall boundary
conditions were used in the x direction, while periodic
boundary conditions were used in the y direction. The
algorithm used solves (1), (2), and (4) in conservation
form using a total variation decreasing nonlinear switch
between a first-order transport scheme and an Adams-
Bashforth, centered eighth-order spatial scheme. ' The
following density profile was chosen: np(x) =0.55
+0.45tanh(x/L2) for x & 0, and

np(x) = [0.55+0.45 tanh(x/L2)]exp( —x/L ~ )

for x &0, with g= —ge„and B(x) determined from
equilibrium force balance. We choose L ~

=1.0, L2 =0.2,
C, =1.0, and g=1.0. The length scale is normalized to
L& =1.0, the velocity is normalized to C, =1.0, and the
time scale is normalized to L~/C, =1.0. The boundaries
used in the simulations are x = —2.5 and 2.5, and

y =0.0 and 4.0.
We benchmarked the code in the linear regime by ini-

tializing the grid with a single mode and calculating the
eigen function and eigenvalue. For p; /L 2

=0 and
„=0. 8, we calculate the linear growth rate to be
y=1.70, which agrees well with the theoretical value of
y=1.81. In the nonlinear regime it is difficult to bench-
mark the code with previous results because the code is
compressible and we treat a diffuse density profile (as
opposed to a sharp-boundary model). Nevertheless, we
estimate the Froude number to be F=0.27 which is in
reasonable agreement with experimental (F=0.2-0.3)
and numerical ' (F=0.23) results. The initial condi-
tions for the simulations discussed in the remainder of
the Letter is a 1% random density fluctuation throughout
the grid.

In Fig. 1 we show the density contours [Fig. 1(a)] and
velocity vector field [Fig. 1(b)] for the Rayleigh-Taylor
instability in the small-Larmor-radius limit (i.e. , we use
p;/L2=0) at t =5.5. We show these results primarily
for comparison with the Rayleigh-Taylor instability in

the large- Larmor-radius limit. The following points
should be noted. First, the instability initially develops in

the region x & 0.2. The peak of the density at t =0 is at
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FIG. 1. Simulation results for the Rayleigh-Taylor instabili-

ty in the limit of small Larmor radius (p;/Lz=0) at time
t =5.5. The magnetic field is in the —z direction (out of the
page). (a) Density contours. The contour levels are as follows:
dashed lines (0.30 and 0.43), heavy solid lines (0.55), and light
solid lines (0.68 and 0.80). (b) Velocity vector field. The
"unit" velocity vector of 1.5 is shown for comparison.

FIG. 2. Simulation results for the Rayleigh-Taylor instabili-
ty in the limit of large Larmor radius (p;/Lz=5) at time
t =1.0. The magnetic field is in the —z direction (out of the
page). (a) Density contours. The contour levels are the same
as in Fig. 1(a). (b) Velocity vector field. The "unit" velocity
vector of 1.5 is shown for comparison.

x=0.2 so that the linearly unstable regime is x (0.2
where gr)lnno/r)x &0. As the instability evolves non-
linearly, we find that the usual "spike" and "bubble"
morphology develops [see Fig. 1(a)]. The "heavy" ma-
terial falls (i.e., the spike) while the "light" material
rises (i.e., the bubble). In each case, a mushroomlike
structure develops. Second, associated with the develop-
ment of the mushroomlike heads is the development of
counterrotating vortices. This is evident in Fig. 1(b).
The fluid motion in the spikes is such that the fluid falls
downward in the center of the spikes, but at the edges is
deflected horizontally, and eventually turns upwards
creating a swirling pattern. The bubbles display the
same behavior, but the upward-flowing fluid is eventually
turned around to go downward. Thus the fluid has a
significant curl as expected. And third, the bulk of the
"action" takes place in the linearly unstable region (i.e.,
x & 0.2). We see that disturbed fiuid motion occurs be-
tween x = —1.0 and x =0.7 so by this time there is rela-
tively little disruption of the "stable" side of the density
profile (i.e., where g r)Inn'/r)x )0).

In Fig. 2 we show the density contours [Fig. 2(a)] and
velocity vector field [Fig. 2(b)] for the Rayleigh-Taylor
instability in the limit of large Larmor radius (i.e., we
use p;/L2=5. 0) at t =1.0. The following points should
be noted. First, it is clear that the un magnetized
Rayleigh-Taylor instability develops much faster than
the magnetized Rayleigh-Taylor instability, consistent
with linear theory. Second, although not evident in Fig.
2, we find that during the linear evolution of the unmag-

netized instability, the fastest growing modes are the
shortest-wavelength modes. This is consistent with the
theoretical analysis which indicated that y~k~. Howev-
er, longer-wavelength structures seem to dominate as the
instability progresses, i.e., those that are comparable to
the initial density-gradient scale length. Third, the in-
stability initially develops on the "unstable ' side of the
density profile (i.e., g r)lnnp/Bx & 0), but unlike the mag-
netized instability, it disrupts more of the density profile
[see Fig. 2(a)l. The extent of the disruption is between
x= —1.1 to x=1.6, a significantly larger region than
the previous case. It appears that narrow channels de-
velop which allow the magnetic field to penetrate into the
stable top side of the density profile. Fourth, a secon-
dary instability appears to develop on one side of the
largest density enhancements, i.e., the "fishbonelike"
structure in Fig. 2(a). It is not entirely clear what
causes this finer scale structure; it may be an eigenmode
structure or a secondary instability. Fifth, the velocity
vector field is completely different from the magnetized-
ion case. The flow is clearly not divergence-free [see Fig.
2(b)] and large-scale flows seem to form Iluid "sheets. "
The maximum velocity reached in this case is u =1.9
which is somewhat larger than the "free-fall" velocity
u =1.5. And finally, we add that we have also per-
formed simulations for p;/L2=1; the linear growth rate
of the instability is smaller than either of the two exam-
ples presented above, in accordance with linear theory. '

In conclusion, we have presented the theory and first
nonlinear fluid simulations of the Rayleigh-Taylor insta-
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bility in the limit of large ion Larmor radius (i.e.,

p;/L»1). These results are based upon a modified set
of one-fluid MHD equations which is valid for arbitrary
values of p;/L or cu/0; (but requires p, /L « 1 and
co/0, «1). We have demonstrated that in this limit the
Rayleigh-Taylor instability evolves in a dramatically
different manner from the conventional, small-Larmor-
radius Rayleigh- Taylor instability. Besides developing
much faster, the unmagnetized instability appears to be
more disruptive of an accelerating plasma density shell,
and generates compressible ion flows. Moreover, al-
though the fastest-growing modes have the shortest
wavelength, longer-wavelength modes seem to dominate
in the nonlinear regime. Finally, these results are con-
sistent with the observed structuring of the Active Mag-
netospheric Particle Tracer Explorer (AMPTE) barium
release in the magnetotail, ' and recent laboratory obser-
vations of plasma structure. ' In both cases, plasma
shells rapidly decelerate as they expand into a strong
magnetic field, develop structure on time scales much
faster than the ion cyclotron period, and are dominated
by structure sizes comparable to the density-gradient
scale length.
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