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Dynamic Capillary Pressure in Porous Media: Origin of the Viscous-Fingering Length Scale
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We measure the velocity dependence of the capillary pressure, AP.(v), between two fluids in a porous
medium. At zero velocity, the interface is pinned, and a critical AP. must be achieved before the inter-
face moves. For nonzero velocities, there is an additional dynamic component to AP., which scales as
v!2 when a wetting fluid displaces a nonwetting fluid. We suggest that this dynamic component of AP,
can stabilize viscous fingers, and obtain excellent agreement with experiment.

PACS numbers: 47.55.Mh, 47.20.—k, 47.55.Kf

The viscous-fingering instability has been the subject
of study for over thirty years'~3 because of both its fas-
cinating underlying physics and its potential technologi-
cal importance in many diverse areas involving fluid flow
through porous media. The instability arises when a
fluid of high viscosity is displaced by a fluid of much
lower viscosity. As the displacement velocity increases,
the interface between the two fluids becomes unstable to
the formation of fingers, resulting in very complex and
interesting patterns in the fluid interface.

Our understanding of the viscous-fingering problem
has advanced considerably in recent years. In part, this
is due to the progress achieved in our understanding of
the fingering instability in the Hele-Shaw geometry.*
The equations describing the fluid flow are similar to
those for a porous medium, yet the geometry is much
simpler and therefore more amenable to detailed anal-
ysis. In part, this is also due to the progress achieved fol-
lowing the observation® that these same equations can be
mapped onto those describing diffusion-limited aggrega-
tion (DLA).

Nevertheless, there remain several fundamental, un-
resolved questions. Among the most important are those
involving the boundary condition at the interface be-
tween the two fluids, where the relative ability of the
porous medium to be wetted by each of the fluids deter-
mines the capillary pressure at the interface. These wet-
ting effects play a critical role in governing the essential
physics,® despite the fact that fingering occurs at high
capillary number, N¢,, when the viscous forces dominate
over the capillary forces. In the nonwetting case, when
the displaced fluid preferentially wets the porous medi-
um, the individual finger widths are comparable to the
pore size, independent of flow velocity or capillary num-
ber. In this case, DLA provides an excellent description
of the patterns formed,’ since the finger width can be
equated to the walker size. In contrast, in the wetting
case, when the displacing fluid preferentially wets the
porous medium, the fingering behavior is markedly
different. Here, the width of the individual fingers, w, is
found to be much larger than any characteristic length

scale of the porous medium. Furthermore, scaling be-
havior is found so that w=(x/Nc,) ~'/2, where « is the
inverse resistance to flow or permeability of the porous
medium, and Nc, =uU/y, where u is the viscosity of the
more viscous fluid, y the surface tension between the two
fluids, and U the average fluid velocity. The origin of
this new length scale and its scaling behavior have, in
fact, been outstanding puzzles in the behavior of the
viscous-fingering instability in porous media for over
thirty years. 8

An important key to the resolution of these puzzles
lies in the behavior of the capillary pressure. However,
to date there have existed no experimental data to guide
the theoretical treatment of both the boundary condi-
tions as well as the choice of the continuum equations
which describe the fluid motion. In this Letter we
present the results of experiments which directly mea-
sure the capillary pressure drop across the interface, AP,,
and its dependence on the velocity of the interface. We
show that it has two important features: At low veloci-
ties, there is a pinning pressure which must be overcome
before the interface can move; at high velocities, there is
a nonlinear dependence on velocity and, in fact, AP, can
actually change sign at sufficiently large velocities. This
behavior of the capillary pressure has not been included
in any analysis of the viscous-fingering instability to
date. Here, we suggest that it can fundamentally change
the nature of the instability. Using our results we
present a new analysis of the instability that accounts for
both the scaling and the characteristic length scale of the
finger width.

Our experiment is a direct measure of the capillary
pressure between two fluids as the interface moves
through a porous medium. Our porous medium is
formed from a 5-mm-diam tube filled with lightly sin-
tered glass beads of 0.5-mm diameter. We ensure that
the glass is preferentially water wetted by heating it in a
0.5M solution of nitric acid prior to each experiment.
The tube is initially filled with the nonwetting fluid, de-
cane, which is displaced by the wetting fluid, water. The
total pressure drop across the porous medium is mea-
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FIG. 1. Pressure across a 1.5-cm-long tube of porous medi-
um as a function of position as nonwetting oil is displaced by
wetting water at three different velocities. The jump in the
pressure occurs as the interface moves through the porous
medium, and reflects the magnitude of the capillary pressure.

PRESSURE (dynes/cm?2)

sured with a piezoelectric pressure transducer, while the
pressure drop across a small capillary tube upstream
from the porous medium is also measured to determine
the velocity independently. The permeability of this
capillary tube is chosen such that the flow is velocity con-
trolled at all but the smallest velocities. The velocity is
changed by variation of the pressure head of the displac-
ing fluid. The two fluids used have closely matched
viscosities, which ensures that the pressure drop is in-
dependent of the position of the interface in the tube and
eliminates any viscous instability.

In the absence of an interface in the porous medium,
the viscous pressure drop across the tube is AP, =uvL/x,
where L is the length of the tube, and v is the measured
velocity of the flow. An interface results in an additional
pressure drop, AP.(v). To ensure that the viscous pres-
sure drop does not completely dominate the total pres-
sure at higher velocities, the length of the porous medi-
um is limited to 1.5 cm. In Fig. 1 we show the pressure
drep across the porous medium as a function of interface
position for different velocities. The pressure jumps as
the interface passes through the porous medium. The
height of this jump reflects the magnitude of the capil-
lary pressure. Not only is AP. dependent on velocity, but
at sufficiently high v, it changes sign. We note that AP,
is unchanged after the interface has passed through the
porous medium, which indicates that x is unchanged and
suggests that virtually all the oil is displaced by the wa-
ter.

The results are summarized in Fig. 2, where we plot
AP, as a function of velocity. At low velocities, AP. <0,
reflecting the fact that the wetting properties cause the
water to imbibe into the porous medium. However, the
“strength” of this imbibition decreases as the velocity in-
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FIG. 2. Capillary pressure as a function of velocity. The
solid line is a fit to the data. Inset: The large-pinning regime
and the sudden jump in velocity which occurs upon depinning.

creases, and at sufficiently high velocity, AP, > 0, so that
an additional driving pressure is required to force the in-
terface through the porous medium. As additional im-
portant feature is illustrated by the low-velocity behavior
of AP., shown in the inset of Fig. 2. There is a relatively
large range of pressure over which the interface does not
move, or is “pinned.” Once this pinning pressure is over-
come, there is a sharp jump in the velocity, with very lit-
tle increase in AP.. One important consequence of the
pinning is that the static capillary pressure, AP.(0), is
not well defined.

While the behavior of AP, is quite complex, we can
parametrize its velocity dependence. We assume that
the magnitude of the capillary pressure is set by the stat-
ic value, AP.(0) = y/r,, where ry, is some characteristic
throat radius. While the pinning of the interface makes
this somewhat difficult to define precisely, we expect the
static value to represent the critical depinning pressure at
which the interface just starts to move. We then hy-
pothesize a nonlinear dynamic contribution to the capil-
lary pressure, so that AP.(v) = y/rin(—1+KNE,),
where K is a constant and x an exponent to be deter-
mined from the data. We use a nonlinear least-squares
fit to the data to obtain the results shown by the solid
curve in Fig. 2. We obtain y/ry, = — 550 % 50 dyn/cm?,
K =300+50, and x =0.5*0.1, where the errors re-
flect an estimate of our confidence in the values deter-
mined from the data. The value obtained for the static
capillary pressure is roughly equal to the critical pressure
at which the interface is depinned and starts to move.
We obtain similar behavior using a tube filled with beads
of a different size and confirm that the magnitude of
AP.(v) scales with bead size, and so it is set by y/ri,
while both K and x are independent of bead size.

We can now reexamine the origin of the viscous-
fingering instability in light of these measurements of the
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behavior of the capillary pressure. The traditional view'
held that the viscous instability competes with the stabil-
izing force of the surface tension of the interface as it is
deformed by the finger. The essential physics of this is
captured in a dimensional analysis whereby the length
scale is determined by matching of the viscous and capil-
lary pressure drops. This gives the observed scaling of
the finger width, w=(x/Nc,) ', but predicts a finger
width much smaller than observed. This has led to the
hypothesis of an effective surface tension, substantially
larger than y, that varies with the large-scale curvature
of the interface.®* A more recent computer simulation
of the Hele-Shaw equations, which included large per-
meability fluctuations, found a similar scaling for the
finger width.® However, we are unable to find any ex-
perimental evidence whatsoever that the capillary pres-
sure depends on the overall radius of curvature of the in-
terface. Instead, we find that when the interface is sta-
tionary, AP.(v) is not well defined but exhibits a critical
depinning pressure determined by y/r.

In contrast, AP.(v) will vary along the interface of a
moving finger since the local velocity of the interface
varies with position. We therefore hypothesize an entire-
ly new stabilization mechanism which incorporates the
experimentally observed behavior of AP.(v). Since the
dynamic component of the capillary pressure makes it
more difficult to move the interface the greater its veloci-
ty, we assume that this provides the stabilizing force.
We thus ignore the static component of AP.(v) entirely
as it is constant and independent of position, and can
therefore play no role in the determination of any dy-
namic stability. Again, we use a dimensional analysis to
capture the essential physics of this mechanism, and we
equate the viscous pressure drop to the dynamic com-
ponent of the capillary pressure drop and solve for the
length scale. This gives w = 2nyNé;,1/r,h, where Nca,
refers to the velocity measured at the tip of the finger,
rather than the far-field, average velocity.

We can test this hypothesis by using data obtained
with a Hele-Shaw cell filled with glass beads identical to
those used in these experiments.® Previous analysis of
such data showed that w scaled as Nc_al/z, where the
capillary number referred to the average fluid velocity.
Since the important parameter in this model is N¢,,, we
have reanalyzed this data by examining the video record-
ings of the fingering and measuring the tip velocity of
each finger directly. In Fig. 3 we replot the data but now
use Nca, of the individual fingers. The measured finger
width is normalized by k' to include results obtained
with three different bead sizes. We again find a similar
scaling behavior, wz(x/NCa',)l/z. By comparison, since
we measure x = 0.5, our model predicts w=Ng!/>.
Furthermore, since k=rg&, we also predict that w=xl/2
Thus our predicted scaling behavior is in excellent agree-
ment with our experiments.

The magnitude of the length scale in our model is
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FIG. 3. Scaling behavior of the viscous-finger width in the
wetting case, with the width normalized by Jx, and Nca, the
capillary number which refers to the velocity of the tip of the
individual fingers. The slope of the solid line is —0.5.

determined by the magnitude of the dynamic component
of AP, and is reflected by the constant K, which we mea-
sure independently in our experiments. To test the
agreement with the viscous-fingering results, we rewrite
our prediction for the finger width as w==2(y/ry)
x(k/y)KNG'/2. We assume that the change from de-
cane (=1 cP) to mineral oil (u =190 cP) affects only y
and Nc,, but not the form of AP.(v). Thus our fit to the
data in Fig. 2 gives y/rin==550 dyn/cm? and K = 300,
and independent measurements give y = 41 dyn/cm, and
k=2%10"%cm? Then, for Nc,, =8.1x10 "% we pre-
dict w==0.56 cm. By comparison, from Fig. 3, we mea-
sure w=1.3 cm. We consider the agreement quite
reasonable given the approximate nature of our model.

These results suggest that it is the dynamic component
of the capillary pressure which is crucial in the viscous-
fingering instability in the wetting case. We emphasize,
however, that despite the strong supporting evidence,
these experiments are not a proof of our model. We
note, for example, that the static component of the capil-
lary pressure represents an essential singularity in any
solution of the continuum equations which describe the
Hele-Shaw cell, and can thus not be ignored. However,
it is not clear which continuum equations are appropriate
for a porous medium, given the behavior of AP.(v) ob-
served, with its pinning at low velocity and its dynamic
dependence at higher velocities. It is possible that a mi-
croscopic treatment of the fluid flow in the complex,
disordered geometry will lead to an alternative explana-
tion of the new length scale. However, in the absence of
such a treatment, we feel that the model proposed here,
which is based on a continuum treatment of the flow,
represents a reasonable account of the physics and is well
supported by the experimental data.
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By way of conclusion, we note that in this paper we
have presented experimental data on the behavior of AP,
and have discussed its consequences on the viscous-
fingering instability. We have not considered at all the
very interesting and important question of the physical
origin of the observed behavior of AP.(v). The low-
velocity pinning behavior is clearly due to the strong dis-
order of the porous medium. In fact, one can map the
movement of an interface at these velocities onto the
random-field problem,'®!! analogous to other nonlinear
transport problems such as, for example, sliding charge-
density waves (CDW). Thus the interface velocity cor-
responds to the CDW current while AP, corresponds to
the voltage. Of course, the center of the pinned region of
AP, is offset from zero by comparison to the CDW volt-
age because of the imbibition of the wetting fluid at very
low velocities.

The dynamic effects observed at high velocities bear
some similarity to those seen for the capillary pressure
drop in a smooth tube with a moving bubble of a nonwet-
ting fluid, first discussed by Bretherton.!'? However, to
our knowledge, there has been no analytic treatment of
the moving contact line for flow in a smooth tube. Ex-
perimentally, the contact angle on a plane surface is
known to exhibit both hysteresis and a dependence on ve-
locity.!3 Furthermore, in a capillary tube, Hoffman'*
has studied the interface of a wetting fluid advancing
into air and finds that the cosine of the contact angle,
and thus AP., change sign as the velocity is increased.
However, in a capillary tube, AP, changes sign at a value
of Nca 2 orders of magnitude larger than in the porous
medium. This suggests that the strong disorder in the
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porous medium also plays a major role in causing the ve-
locity dependence of AP,. Clearly more work is required
to account fully for the origin of the observed behavior,
and further experiments are under way in our laboratory
to address these important and fascinating questions.

We acknowledge useful and informative discussions
with Mac Lindsay, Marko Robbins, and Eric Herbolz-
heimer.
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