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Oscillator Strengths for the Alkaline-Earth Atoms Using Rotor-Vibrator
and Con6guration-Interaction Wave Functions
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We have calculated oscillator strengths for transitions between low-lying states of the alkaline-earth
atoms using both configuration-interaction (CI) and simple optimized molecular rotor-vibrator (RV)
wave functions for the e-core-e system. Our CI results compare favorably with experimental and other
accurate values, indicating that these functions used in previous studies of electron correlation are reli-

ably accurate. Most RV results agree better with accurate values than do Hartree-Fock results, thus

showing the success of the RV model in its first test of calculating an experimental observable.

PACS numbers: 31.20.Tz, 31.50.+w, 32.70.Cs

Research seeking to elucidate the nature of electron
correlation in atoms has focused primarily on two-
electron systems, particularly the doubly excited autoion-
izing states of helium (He**). These were traditionally
described by mixtures of independent-particle configura-
tions, which express how the angular momenta of the in-
dividual electrons are spoiled. New approximate con-
stants of motion were then sought, to give an alternative,
and perhaps more accurate, intuitive physical interpreta-
tion and classification of these states. In the collective,
moleculelike picture of electron correlation developed
first for He**, ' the characteristic quantum numbers are
those describing collective vibrational and rotational ex-
citations of the "linear triatomic molecule" e-nucleus-e.
Watanabe and Lin have recently made the first efforts
toward extending this model to three-electron systems.

The molecular picture is strikingly apt for low-lying
valence states of the more experimentally tractable quasi
two-electron systems, the alkaline-earth atoms, and
the alkali-metal negative ions. From core pseudopoten-
tials and Sturmian basis functions, configuration-inter-
action (CI) wave functions were calculated for the
valence electrons in these states and used to construct
their conditional probability densities in the internal e-
core-e frame. The densities for these systems show spa-
tial behavior at least as moleculelike as that found by
similar means for doubly excited He. These wave func-
tions were used to calculate expectation values of the
momentum correlation of the two valence electrons,
(pt. p2&. The predictions from the molecular model of
the sign and relative magnitude of this quantity for each
state were borne out in almost all cases. Most recently,
we calculated overlaps (S) of these wave functions with
simple molecular rotor-vibrator wave functions in order
to quantify the extent of validity of the molecular pic-
ture. By varying the parameters of the rotor-vibrator
functions to maximize the overlaps, we constructed opti-
mized approximate moleculelike wave functions for the
correlated atomic states. Projections of the one-term

rotor-vibrator wave functions onto the corresponding
many-configuration CI wave functions were large in

many cases; S is above 0.9 for most states.
In the present work, we test the accuracy of both the

elaborate atomic wave functions used in the aforemen-
tioned studies and the simple molecular rotor-vibrator
functions which approximate them by using each set of
functions to calculate oscillator strengths for transitions
in the alkaline-earth atoms. This represents the first cal-
culation of an experimentally observable atomic property
using electronic rotor-vibrator wave functions and in this
way provides a first test of the utility and validity of the
molecular model of electron correlation in atoms.

We first calculated oscillator strengths for the atomic
transitions using the CI wave functions of Krause and
Berry, obtained by treating the alkaline-earth atoms as
two-electron atoms with the core pseudopotentials of
Bachelet, Hamann, and Schluter. These functions are
of the form

f= ' 2 I(+Ilrl+r21+ & I
',

3 2Lt+1 M, ,MI
(2)

where the subscripts i and f indicate respectively the ini-
tial and final states; we use atomic units. We took exper-
imental values' for &F. since the dipole matrix element
is the theoretically critical quantity. The calculation is
straightforward and all the necessary integrals can be
performed analytically.

We also calculated oscillator strengths using the
Morse molecular wave functions obtained by Hunter and
Berry for the alkaline-earth atoms. These are simple
products of stretching, bending, and rotation functions

X ~l,n, l n 4' ln, («)k ,n(t2r)+ lt(rl r2), (1)
I ln ll2n 2

where the radial basis functions p„i(r)=Jtlr" 'e ~" are
Sturmians and the Pi, t, (r|,rz) are coupled spherical har-
monics. The absorption oscillator strength, in the dipole
length form, is given by
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TABLE I. Oscillator strengths (f) are presented here for selected transitions in the alkaline-earth atoms. The AE values, in

atomic units, are from Ref. 10. The configuration-interaction (fct) and rotor-vibrator (fav) values were calculated as described in

the text. The values from accurate calculations (fp,cc), Hartree-Fock calculations (fHF), and experiment (fExpr) were taken from
the literature. All of the calculated values were obtained with use of the dipole length form of the transition matrix element.
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for the e-core-e "triatomic molecule, "

R„—,„,(r), r2)
1

I iP2
r i 1/2

x G,",(&/2)
g

a8MQ(tzPy) . (3)
Sx

The various terms are described in detail in Ref. 5.
Briefly, R„—,„,(r~, r2) is a symmetrized (+) or antisym-
metrized ( —) product of Morse oscillator eigenfunctions
with n & and n2 quanta, respectively, in the two "bonds";
G„(o~z)is a two-dimensional harmonic oscillator eigen-
function with v2 bending quanta and k quanta of vibra-
tional angular momentum about the axis of the linear
configuration; and 2)~z(apy) is a rotation matrix and an
eigenfunction for the rigid symmetric rotor. The param-
eters of these simple molecular wave functions were
determined in Ref. 5 by our maximizing their overlaps
with the corresponding CI wave functions. For com-
pleteness, we have included Ba here, even though the
molecular assignments of some of its states are question-
able.

The oscillator-strength calculation using these wave
functions proceeds along the lines followed in calcula-
tions of molecular rotation-vibration line intensities. "
We employ a body-fixed bisector frame x'y'z', in which
the e-core-e triangle lies in the x'z' plane with the nu-
cleus at the origin and the x axis bisecting the interelec-
tronic angle Oi2. The components of the dipole moment
vector p are

The results of our two calculations are presented in

Table I together with various literature values of oscilla-
tor strengths for comparison: The most accurate calcu-
lated and experimental values we could find, and Har-
tree-Fock values. All the calculated values compared
here were obtained by use of the dipole-length form of
the matrix element, and wherever possible with experi-
mental &F. values. The same comparison is presented
graphically in Fig. 1.

The agreement between our CI oscillator strengths
and other accurate calculated and experimental values is
quite good, particularly for the relatively strong transi-
tions. This indicates that the pseudopotential-based CI
wave functions are of reliable accuracy, especially for the
S-P and P-P transitions. They appear to be less reliable
for the transitions involving D states, most of which are
extremely weak, where our results diAer substantially
from the accurate values on a relative basis. We at-
tempted to improve these results by further optimization
of the exponent g in the radial basis functions; this gave
only slight improvement in the results.

The molecular wave functions used here represent a
zero-order approximation, in the collective, moleculelike
picture, to the true wave functions. Thus it seems ap-
propriate to compare the oscillator strengths calculated
from them with those calculated from a zero-order
approximation of the independent-particle model, i.e.,
Hartree-Fock wave functions, as well as with the accu-

p, ,
= (r ~+ r2) cos(0~+2),

Py~ 0,

(4a)

(4l )

3.0

(')

0
p, .= (r ~

—rz) sin(8~/2). (4c)

p, , q=0,
(5)

To transform p. into the space-fixed frame, we rewrite it
as a spherical tensor' of rank one with components

f z. o—

1.0
0

I

0 5
+0

0. 0
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Now,

p =g~ X'*q(apy)pq(r~, r2, ()fz),

and the oscillator strength can be written as

(7)
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where again atomic units are employed. The integral
over the Euler angles can be performed analytically; thus
we are left with three separable one-dimensional integra-
tions to perform numerically.

FIG. 1. Graphical representation of the oscillator strength
values from Table I organized by transition: (a) 'S' 'P',
(b) 'P 'P', (c) 'P' 'S', and (d) 3P' 'S'. The sym-
bols are as follows: triangles, Hartree-Fock calculations; cir-
cles, rotor-vibrator; plusses, CI; crosses, accurate calculations;
and filled squares, experiment.
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rate values. Table I and Fig. 1 show that for most of the
transitions the rotor-vibrator oscillator strengths agree
better with the accurate values than do the Hartree-Fock
oscillator strengths. The only case where Hartree-Fock
appears to be consistently better is for the P S'
transitions. The agreement between the rotor-vibrator
oscillator strengths and the accurate values is best for in-
trashell transitions, as expected, since the molecular pic-
ture seems less applicable for intershell states.

All of the transitions we have considered are allowed
based on electron spin, total angular momentum, and
parity selection rules. Almost all of them are also al-
lowed on the basis of the stricter selection rules of the
independent-particle model. The one exception is the
6s6p P Sd P' transition in Ba, which is forbidden
in the independent-particle picture since it corresponds
to a "two-electron jump. " In the molecular picture, on
the other hand, this transition corresponds to an allowed
bending transition. We can see from the tabulated value
that the oscillation strength for this transition is indeed
small but substantial. Unfortunately, this example is
clouded somewhat because the 5d P' state of Ba ap-
pears to lie midway between the independent-particle
and rotor-vibrator extremes. Nevertheless, it shows
how the molecular picture might lend useful insight into
atomic oscillator strengths.
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