PHYSICAL REVIEW
LETTERS

VOLUME 59

28 DECEMBER 1987

NUMBER 26

Exact Lyapunov Dimension of the Universal Attractor for the Complex Ginzburg-Landau Equation
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We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the
complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We
obtain upper bounds on the attractor’s dimension when the parameters do not permit an exact evaluation
by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of
freedom based on a simple linear stability analysis and mode-counting argument.

PACS numbers: 05.45.+b, 03.40.—t, 46.20.+e, 47.25.—c

The complex Ginzburg-Landau equation (CGLE),

A=aA+BAn+yA|A|2,

(1)
A(x,t),a,B,y complex,

is a generic amplitude equation on long space and time
scales close to the critical point of instability in a variety
of problems, particularly in fluid dynamics' and in chem-
ical turbulence.? Without loss of generality the linear
driving coefficient @ may be taken real. The coefficient a
usually derives from how far the original problem is
above criticality and is thus naturally taken as a bifurca-
tion or control parameter. Various papers have investi-
gated pattern formation, low-dimensional chaos, and
coherent structures® in the CGLE in one spatial dimen-
sion with periodic boundary conditions (x € [0,L]) in
the parameter regime a >0, B8, >0, and y, <0. This is
the regime which will concern us for the rest of this
Letter.

The six parameters in the problem (L, a, B,, Bi, 7,
and y;) are not all independent. We may define the new
dimensionless coordinates x ', ¢’, and the new variable 4’
by

x'=x/L€[0,11, t'=(B,/L*),

2)
A'=L(=y,/p,)'"4, (
and the dimensionless parameters

R=aL’/B,, v=BilB;, u=vil7r, (3)

and rewrite the CGLE (dropping the primes)
A =RA+(1+iv) Ay — (L +ip) | A A2, 4)
x € [0,1].

The new bifurcation parameter R, playing the role of an
effective Reynolds or Rayleigh number, is the ratio of
the long-wavelength driving, or destabilizing, rate (a) to
the long-wavelength damping, or restoring, rate (8,/L?2).

The finite dimensionality of (possibly strange) attrac-
tors of a priori infinite-dimensional dissipative systems is
a topic which has received much attention as it provides
a link between chaos in finite-dimensional dynamical
systems and turbulence in continuum systems. Finite-
dimensional attractors have been rigorously established
for an increasingly large number of partial differential
equations, including the two-dimensional Navier-Stokes
equations, the Kuramoto-Sivashinsky equation, and a
family of reaction-diffusion equations.* In all these cases
finite upper bounds on the dimensions have been ob-
tained, while the exact dimensions have eluded computa-
tion.

The universal attractor, X, for the CGLE in the Hil-
bert space L2[0,1] is the largest set both invariant under
the dynamics and bounded under the time-reversed dy-
namics.® In this Letter we compute the exact Lyapunov
dimension of X as a function of R when |u| < +/3 [see
Eq. (4)]. The Lyapunov dimension, d1, defined by the
Kaplan-Yorke formula® with the global Lyapunov ex-
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ponents, is an upper bound on the Hausdorff dimension mates is presented by Doering et al.® The upshot of
of X.7 We obtain finite upper bounds on d; as a func- these considerations is that X lies in the ball of radius R
tion of R when |u| > V3. in L2 Additionally, X € L™ (the set of bounded func-

All solutions of the CGLE are attracted to a bounded tions) since the asymptotic L2 and H' norms above im-
set in L? at a uniform exponential rate, uniformly in the ply that

initial condition. The time-dependent L? norm (||4]|7

2 2 2p1/2
= [§dx A* 4) of any solution satisfies SngAH”S R+26R*{1+[1+(1+8)/6°R1". (7a)

|43 = R/l —e ~2R1], (5) In the cases where v=0 the CGLE admits a maximum
principle and an improved upper bound on the L~ norm

independent of the initial condition. Similarly, the L2 of the solutions on X may be derived®:

norm of the derivative (the H! norm) satisfies )
sup|l4||Z <R, v=0. (7b)
lim ||4:]|3=82R* {1+ 1+ (1+8)/62R1"32, (6) il
{— oo
To compute the global Lyapunov exponents we consid-
er the linearized flow along a trajectory in X. For a solu-
tion A(t) € X (with the spatial coordinate suppressed)

where §=max{0, —2+ |1+iu|}, and this limit is ap-
proached at a uniform exponential rate independent of

the initial conditions. A detailed derivation of these esti- | the linearized flow of the vector &(z) € L2, along A (1), is
defined by
0, E=RE+(U+iv)Ee —2(0+ip) | A 26— O +iu) A%E* =F(1,A4¢)¢, (8)

where F(t,A4¢) is shorthand for the generator of the linearized flow with the initial condition A for the solution of the
nonlinear flow. We will denote the solution £(¢) of Eq. (8) as L(z,4¢)& where & is the initial condition. The sum of the
first n global Lyapunov exponents’ governs the largest exponential growth rates of n volumes according to

t— o &ll=1

M+ - A, =limsupz "'In sup . Sup [|LG, AQ)EIN -+ - AL(1,40)Ex]| L. 9)
Ao X ||
In the above the magnitudes of the volume elements are given by the norms on the corresponding spaces of n-forms on
L2. That is, for vectors &6 € L?,
EIA - AE||P=CEIA - AEREIA -+ AERD, (EIA - NERGIA -+ AG,) =detM, with M;; =(&;,¢)), (10)

where (A4,B) is the inner product in L? [in our situation, (£,0) = f{dx £* (x)¢(x)].
The Lyapunov dimension of X is defined by the following procedure. Consider the integer m such that

At oo FA, =0, but A+ - FA, 4+ <O an
Then dy is computed from the Kaplan-Yorke formula®
du=m+0+ - +xn)/ | Am+1l. (12)

The fundamental theorem of Constantin and Foias’ asserts that d1 is an upper bound on the Hausdorff dimension of X
when the global Lyapunov exponents are utilized.

The time derivative of the n-volume spanned by &,(¢), . .. ,&,(¢) is given by
(d/d)||L(t, ADEIN - -+ AL(t,A40)Ex]| 2 =2||L(t,A0)EIA - - - NL(t,A0)E,|| *Ref{Tr[F (1, 40) o Py (1)1}, (13)
where P,(¢) denotes the time-dependent projection of L? onto the span of &(z),...,&,(t) and TrlF(z,40)°P,(1)]

denotes the trace of the finite-rank operator F(z,4¢)°P,(t). From Eq. (9), the sum of the first n global Lyapunov ex-
ponents may be expressed as

t
+ -+ n= 1 -1 [ [ ¢ T °Fp ]] .
Al A h,nlsgpt ln{Ast)lepX“;‘lllg]exp Re j; ds TrlF(s,Ap)° P, (s)] (14)

Although the &;’s are not explicitly present in Eq. (14) above, they enter the formula via the time-dependent projection
P,(s).

A lower bound on the sum of the first n global Lyapunov exponents is immediately obtained by our noting that the
initial condition 4o =0 is contained in the universal attractor, corresponding to the nonlinear solution 4(¢)=0. Thus,

Sup, Ilgllilgl exp [Re [J;’ds[TrF(s,Ao)°P,, (s)]] ] = exp [Re [J:)tds [TrF(s,0)oP,(s)] ] ], (15)
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where P, is the projection onto the first n Fourier coefficients ¢;(x) =explik;x}, in the order k=0, k;=2x, k3= —2r,
k4=3n, ks=—13nr, etc. The trace in the last term of Eq. (15) above is easily evaluated:
TrlF(2,0)oP,1= Z {R—(U+iv)kA. (16)
j=1
Hence we have the lower bound
a7

n
Mt A= Y {R—KF
Jj=1

This lower bound is independent of the imaginary diffusion, v, and the imaginary part of the nonlinear coupling, u.
Upper bounds on the sum of the first n global Lyapunov exponents are obtained by our bounding the real part of the
trace in Eq. (14) from above. Let y; be a set of orthonormal vectors spanning P, (¢)L 2. Then

Re{Tr[F(t,40)°P, (1)1} = 2 {y;, (R+Hy)) — 20y, | 4| *y;) —Rel( +iu)y;, 42y 1. (18)

J=1

However, for any vector y € L 2 and any Ap € X,

=2y, | 4| 2y —Rel(1 +ip )y, A2y* )} = —2fdx | 4%yl 2—Re{(l +z'y)fdxA2w*2}s sl|4||&]w|z, (19)

where § =max{0, —2+ | 1+iu|} as before, and ||A4|| is ,

a uniform L* bound on all solutions on X [Egs. (7).
Thus, utilizing Eq. (14) we obtain the upper bound

n
Mt A=< Y {R+5]|4])E -k (20)
j=1
Note that §=0 when |pu| =<+/3, so that the upper
bound [Eq. (20)] coincides with the lower bound [Eq.
(17)], thereby yielding the global Lyaponov exponents
exactly. We remark that the computation of the Lya-
punov exponents for |u| =< +/3 does not depend on the
dimension of the space in which the CGLE is posed: The
same formula holds for the CGLE when the spatial vari-
able x lives in a bounded domain in R¢ (with the spec-
trum of the d-dimensional Laplacian treated appropri-
ately) provided that 4=0 is an exact solution.
When | x| < /3, the Lyapunov exponents are

A =R — Qx)2I[n/2], 1

where the bold square brackets indicate the integer part.
The Lyapunov dimension is computed directly from the
defining procedure, Egs. (11) and (12). A plot of d
versus the control parameter is given in Fig. 1. For R
> 0 it is a continuous curve with a discontinuous deriva-
tive at the points where dy is an odd integer (i.e., d| is
not an analytic function of R). We may compute an an-
alytic upper bound on the Lyapunov dimension which is
exact at the points where dy is an odd integer:

dL<23R/4x*+ L)'/2 22)

This upper bound is also plotted in Fig. 1. The Lya-
punov dimension is uniform in u as well as v in this pa-
rameter regime. Lower bounds on the Hausdorff dimen-
sion of X are easily obtained by our computing the di-

mension of the linearly unstable and neutral manifolds of

the solution 4=0. The linearization of the CGLE

around this trivial so'ution yields a linear operator whose
spectrum is easily determined to have the real parts
R —k}? [these are just the Lyapunov exponents: in Eq.
(21)]. Thus the trivial solution has 1+ 2[R 2/2z] un-
stable or neutral orthogonal directions and this serves as
a lower bound on the Hausdorff dimension of X. This
lower bound is also plotted in Fig. 1. The upper and
lower bounds are both asymptotically proportional to

11 T T T T T T T T T
oF -
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R/(2?2

FIG. 1. Plot of the Lyapunov dimension vs effective Rey-
nolds number for the one-dimensional complex Ginzburg-Lan-
dau equation with |u| =<+/3 (piecewise differentiable curve)
and the upper bound [smooth curve from Eq. (22)]. The lower
piecewise constant curve is the lower bound on the attractor’s
Hausdorff dimension obtained from a linear stability analysis
of the trivial solution 4 =0.
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R'2/27, and their values for large R differ only by a fac-
tor of /3.

It is worthwhile to note that the R '/?/27x dependence
of the dimension of X agrees with the intuitive notion of
the “number of modes that fit into the box.”® Expressed
in terms of the original variables in Eq. (1), the attractor
dimension is proportional to Rl/2/27r=Lb0,(/LdiSS where
Lyox is the length of the interval and the “dissipation
length,” Laiss=27(8,/a)'?, is the shortest wavelength
excited by the linearized evolution. Excitations with
wavelengths less than Lgjss are damped by the linear part
of the evolution operator. Simply stated, the result of
our analysis is that when |u| <+/3 the largest Lya-
punov exponents on X are those associated with the trivi-
al solution A4 =0—for all values of the imaginary
diffusion v—in agreement with the more detailed linear
stability analysis in Ref. 8.

When |u]| > /3 the trivial solution is not necessarily
the “most unstable” point on the attractor,® and we de-
termine upper bounds on dy rather than computing it ex-
actly. If the sum of the first n Lyapunov exponents is
less than or equal to 0, then d; <n+1. From the upper
bound on the sum of the first n Lyapunov exponents [Eq.
(20)] and the expressions for ||4||% [Eqgs. (7)1, the upper
bounds on dy. for large R may be summarized:

di < (3/n) | u| R+3|u| 2R2)22+2, (23a)
|u| >~/3, varbitrary,
dL <230+ [u)"2(RV227) +2, (23b)

v=0, u arbitrary.

We note that Eq. (23b) agrees with the lower bound
while Eq. (23a) is significantly larger.

Other aspects of the finite-dimensional behavior of
solutions to the one-dimensional CGLE are developed in
Ref. 8. Notable among these is the fact that the CGLE
also admits a finite-dimensional “inertial manifold.” An
inertial manifold is a smooth (Lipschitz) exponentially
attracting invariant manifold which contains the univer-
sal attractor.'® The partial differential equation, re-
stricted to the inertial manifold, is equivalent to a finite
number of ordinary differential equations. Since the
inertial manifold is exponentially attracting we may as-
sert that, modulo an exponentially decaying transient,
the CGLE is in fact a finite-dimensional dynamical sys-
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