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Eff'ect of Entanglements on Polymer Reaction Rates
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Intramolecular diAusion-controlled reactions between internal groups on an entangled polymer are
considered in the "reptation" or "tube" model. The results motivate new direct microscopic experimen-
tal tests of reptation. For short times compact exploration is found in which the fraction R(t) that has
reacted grows like the exploration volume of a monomer followed by a noncompact regime when R(t)
scales like the distance moved along the tube. At long times compact behavior is recovered and a rate
constant is found which is much smaller than the relaxation rate of the polymer.

PACS numbers: 82.35.+t, 05.70.Ln, 36.20.—r

Entanglements play an essential role in many systems
involving reacting polymers in the melt or concentrated
solution. For example, in many condensation and addi-
tional polymerization reactions intermolecular and in-
tramolecular reactions compete in a highly entangled en-
vironment. ' Other examples include curing reactions'
such as vulcanization of natural rubber or irradiation
treatments, in which preexisting entangled linear chains
react to form a network of interchain links and intra-
chain loops, and other reactions commonly used industri-
ally.

In this Letter, the simplest intramolecular case, that of
dift'usion-controlled reactions between two groups along
a polymer whose dynamics (in the absence of reactions)
are those of the "reptation" model ' of entangled poly-
mers, is studied. My aim is both to help elucidate the
role of entanglements in intramolecular reactions in the
above systems and to provide new and direct microscopic
tests of the reptation model by comparison with experi-
mentally measured reaction rates. (Such comparisons
have been made extensively in nonentangled dilute and
semidilute solutions by use of photophysical measure-
ment techniques. ) While many bulk properties have
been explained in terms of reptation, important
anomalies remain ' and many predictions of reptation
have yet to be conclusively tested: Computer simulations
have provided some support, " but direct microscopic
probes are very limited. '

Previous theoretical studies of entangled systems have
addressed intermolecular reactions' and the intramolec-
ular case of cyclization' where the reactive groups are
at the chain ends. The conclusion is that entanglements
reduce reaction rates k(t) by slowing down the dynam-
ics: k(t)~ro where ro, the longest relaxation time of a
polymer, is greatly increased by entanglements. We
will see below that intramolecular reactions between
internal groups are affected in a more fundamental way
since such groups are far more limited by the topological
constraints of other chains in their ability to explore
space: While an end group fills out a dense structure in
space, an internal group traces an open stringy structure
(see Fig. 1). Note that the structure depicted in Fig.
1(b) is essentially a scaled-up version of that in Fig.
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FIG. 1. Typical paths of groups attached to a polymer of
f./a =200 steps reptating in two dimension (for clarity) with
"Doi-Edwards" dynamics. (a) End group. (b) Internal group
at a/a =30 (same run). Run time was one reptation time.
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h (t) = (t/t. ) '"a,
h(t)=(DTt)'t', tt. &t «,.„.

(la)

(lb)

Here tL = (L/a) t, is the relaxation time of the "breath-
ing modes" along the tube, Eq. (la), after which the
chain diA uses coherently with curvilinear diA'usivity
D—: /Lt, . In the "reptation time" r„~=L /D, the
polymer reptates away into a new tube. Since the tube is
itself a random walk in space the spatial displacement is

x (t) =ah(t) for t & t, .
I now outline the calculation of k(t), details of which

will be presented elsewhere. ' I take the probability

p, ([r(h)]) of a polymer configuration [r(h)J as obeying
a Fokker-Planck equation of the type first proposed by
Wilemski and Fixman ':

j, +Hy, = —gnS(r(a) r(I. —p))y, . — (2)

H is the reptation operator in the absence of reactions
and 0 & h & L labels a segment's position along the tube.
The groups at h =a, L —P (with the convention a & L
—P) react with intrinsic probability Q per unit time
whenever they lie within the "trap" volume n (n «a )
of one another. Taking p, =o to be the equilibrium distri-
bution, and assuming equilibrium statistics for those

1(a). However, the shortest-length-scale Iluctuations,
which are omitted from the dynamics used to generate
Fig. 1, are space filling and it follows that an end group
fills out all of space, unlike an internal group which ex-
plores a small fraction. In consequence k(t) is much
lower for internal groups.

In the reptation picture' the topological constraints of
neighboring chains are modeled as the walls of an open-
ended tube of length L and diameter a which contains
the polymer of N segments. The tube comprises
N/Ne =L/a "blobs" of size a, each containing —N,
polymer segments. On time scales t & t„ the dynamics
are those of a free Rouse chain' of N, segments: x (t)
=(t/t, ) t a, where x(t) is rms displacement and t,
a:N, is the time for a segment to explore a blob. For
t & t, a segment feels entanglements and is constrained
to move along the tube with rms displacement h(t)
where

chains whose reactive groups are in contact (the "closure
approximation" of Wilemski and Fixman ' ), we find
N = —k(t)N(0), where N(t) is the number of unreacted
chains and, for small times, k (t ) =p,qd [1/S (t ) ]/dt,
where we write

S(t)= n—/v, (t), p„=nv, (3)

Here S(t) is the "return probability, " the probability
that the reactive groups are in contact at time I, given
that they were initially, in terms of which I define the
"reaction volume VR(t). p, q =lim, S(t) is the equi-
librium contact probability; s =L —a —

P and V,
=(sa) t is the volume occupied (statistically) by one
reactive group relative to the other. Introducing the
reacted fraction R(t)—:[N(0) —N(t)]/N(0), we obtain

R(t) =V&(t)/V„ (4)

Now for short times we will see that the reaction
volume is simply the exploration volume, VR(t) =x (t).
Thus R(t) =x (t)/V, and hence R(t) is simply the frac-
tion of polymers whose reactive groups were initially
within x(t) of each other. This is a form typical of com-
pact exploration': The groups react if ever their ex-
ploration volumes [x (t)] overlap. To see why V~(t)
=x (t), note that for times t & t„where t, =(s/ )at, is
the relaxation time for the length of chain separating the
groups, their motions are uncorrelated. Thus for t & t„
S(t) corresponds to two Rouse chains of length N, in the
overlap region of volume a in a looped tube [Fig. 2(a)l.
This is in eAect the intermolecular case of de Gennes, '

who finds S(t)=n/x (t): Thus from Eq. (3) Vz(t)
=x (t). For t, & t & t, each group drifts independently
along the tube a distance characterized by a probability
distribution of width —h(t). Thus the probability of re-
turn to the originally occupied intersection is
S&(t)=[a/h(t)] (n/a ). However, as noted by de
Gennes, ' given one tube intersection at h =0 there are
—[h(t)/a]'t others nearby where the groups may reen-
counter [Fig. 2(b)]. Each contributes of order S ~ (t), so

S(t)= n[/ah(t)] 3't= n/x '(t)

and thus V~(t) =x (t) as for t & t, . Thus from Eqs.
(la) and (4) we have

3 t (t/t, ) a /(sa), t & t„
), l ).i h. )"a 'i(sa)" (5)

By the time t, a fraction nb/V, has reacted, where nb=x (t, ) =(hba), and the static quantity
hb=h(t, ) =(sa) ' [see Eq. 1(a)] is the fiuctuation in length of the polymer connecting the groups: This is its breath-
ing mode which relaxes in a time t, . For t & t, it moves coherently along the tube with constant length s. Thus the
probability of return to the multiple intersection region of volume nt, in Fig. 2(b) is of one dimension-al form
—ht, /h (t). Given their return, we find the conditional probability of contact = n/nt, . Now for t & t, the only inter-
sections (of volume nb) contributing to S(t) are those involving equal tube lengths on the h =a and h =p branches;
one can show that there are only (—1)+O([a/h(t)] 't ) of these, i.e., the originally occupied intersection dominates.
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FIG. 2. Configurations which react at times (a) t & t„(b)
t &r&r„and(c)r &r&z, z

FIG. 3. Diagrams contributing to S(t). Add all mirror im-

ages about the "horizontal" and "vertical" axes to generate
complete set.

S(t)= [hs/h(t)] 0/IIb and Eqs. (1) and (3) in Eq. (4) yield

k(r) Qb (I/I ) (a/s), I & I & IL

V, (r/I, ) '~'(a/s) "4(a/L) 'i', rL & t & z„,. (6)

(7)

where z, =a /D . —
In the formal derivation of Eq. (7) S(t) can be safely

evaluated in the Doi-Edwards model [Eq. (lb)] provided
we use an effective trap volume 0 =Qb since groups
within Qb of each other will react because of the small-
time ffuctuations, Eq. (5). In the large-N limit we find

that the originally occupied blob (of volume Qb) dom-
inates: This is the h 0 part of the top left diagram of
Fig. 3. Solving Eq. (2) for N(r) in the "closure approxi-
mation" one finds ' ' N (t ) —e k' where k =p,q/

fp dt [S(r) p~ql and for a =p we obtain Eq. (7). For
general a,P we find k =z,~'p(a+P) (a/s) 'i /aPs, where

z.p p=—(a+ P) '/DT.
To compare with cyclization note that at Axed

a/L, p/L we have k —N ' i, which is slower than the
cyclization result, ' k~~ p ~N

It is interesting to compare the present case to inter-
molecular' reactions in melts: In this case the reactive
groups move independently for all times along two struc-
tures of the type shown in Fig. 1 and so can encounter at
any of the numerous intersections. In the same way as
for the intramolecular case for t &t„ it follows' that
the groups in effect explore space compactly as if there
were no tube: There is no dramatic difference between
reaction rates for end and internal groups.

Let us return now to the structure depicted in Fig.
1(b). Imagine further "blobbing" of our blobbed tube
into blobs containing length a of tube, each of volume
(aa) i: The reactive blobs are now at the chain ends,
i.e., one has cyclization on a lattice of cell size = (aa) 'i

for which V, is explored compactly. Roughly, what one
sees in Fig. 1(b) is a portion of this lattice. Equation (7)
is a non-diffusion-controlled "law of mass action" on this

We can now interpret VR(t) as the volume compactly
explored by the relative position vector of the reactive x Ob/V, . Then k= LUV/(Nht—) with ht =z, yields
groups. From Eq. (6) V~(t) =[h(t)/hb]Aq is the vol-
ume of a blobbed tube, each blob of volume Qb contain- k= [1+0((a/s) ' )],
ing a length of tube [Fig. 2(c)]. Up to t, a single blob is Q

explored [Eq. (5)]. While this tube is compactly ex-
plored, the tube itself fills space noncompactly (recall
x —h 'i ); consequently, the reacted fraction R(t) is
much less than in the case of cyclization where end
groups are not constrained by the tube and the end-to-
end vector explores space compactly, i.e., Vg(t) =x (t)
for all t & z„v. Thus for cyclization R(t)=x (t)/VI.
and so for t & I, Eq. (5) gives R(t) =(t/t, ) i"(a/L) i

and for t, & I & tl. , R(t) =(I/I, ) .(a/L) . For I & tL,
we obtain R(t) =(t/z„z) i from Eq. (lb); this is the re-
sult of Bernard and Noolandi' whose calculations were
in the model of Doi and Edwards, which is a version of
reptation in which the t & IL dynamics are ignored.

Let us now consider long-time behavior, t » z„z. S(t)
is now a sum over all the different ways the groups can
be in contact in the final tube (time t) given their con-
tact initially; each way we represent with a different dia-
gram (Fig. 3). The top and bottom of the H are respec-
tively the initial and final tubes whose configurations are
integrated over with Gaussian weighting, and dotted
lines are 8 functions connecting reactive groups. The di-
agrams are summed with weighting appropriate to the
lengths u and v of initial tube lost at either end and the
distance h diffused forwards in the time t. By the nature
of reptation dynamics, this weighting is the probability
that in the time t the maximum distance the polymer
ever moved forwards (backwards) along its tube was
u (v), and the net distance moved forwards was h.

For long times we find N(r) —e "', where the rate
constant k for a =p can be derived by the followinp sim-
ple argument: For large N [specifically, (a/s)' ((I]
the system relaxes in a time =r; in this time the
fraction which reacts is —AN/N=V~(z, )/V, =(a/hb)
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lattice since the effective reaction rate Q, tr during the
period ~, for which the reactive groups occupy the same
site, namely z, 'Vtt(z, )/(aa), is small: k is the prod-
uct of Q, tr with the equilibrium contact probability
(aa ) t /V, . We remark that for finite N, and corre-
spondingly finite Q, tr, the cyclization result (diffusion
controlled, Q,tr»1) and Eq. (7) ("law of mass action, "
Q, tr « 1) constitute bounds on k. Thus AM 3 ~ k
~ BM ' in general, where A and B are constants.

In conclusion, we find that space is explored compactly
on length scales x ~x, noncompactly on scales
x ~ x ~x, and once again compactly on scales x ~ x
where x =(hba) 't is the diameter of the blobbed tube
and x = (aa) 't is the mesh size of Fig. 1(b). To each
spatial regime corresponds a reaction regime in time.
Particularly experimentally interesting is the possibility
of exploring the regimes t & ~, x & x using photophys-
ical methods which probe times =10 s (cf. tL ~ 10
s typically). Such techniques have been used to measure
reaction rates involving internal groups' but hitherto
only up to concentrations just short of the entanglement
threshold.
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