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Chaotic Transients and Multiple Attractors in Spin-Wave Experiments
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(Received 30 July 1987)

A long-lived transient form of chaos was observed by rf perpendicular pumping of spheres of yttrium
iron garnet in the region of the first-order Suhl instability. The average temporal lengths of these tran-
sients as functions of pumping power were fitted by a theory involving capture of the chaotic trajectory
by multiple periodic attractors.

PACS numbers: 75.30.Ds, 05.45.+b

The unusual behavior of the ferromagnetic resonance
line and spin waves in yttrium iron garnet (YIG) when

subjected to high-power radio-frequency (rf) magnetic
fields has been a long-standing problem. ' Suhl, in an
analysis of spin-wave instabilities, explained why the res-
onance line saturates at relatively low rf powers, but de-
tailed explanations of the behavior of the spin waves in

this system have had to wait for recent developments
in the field of nonlinear dynamics. . Recent experi-
ments '' have shown that many of the behavioral pat-
terns found in nonlinear flows and maps can also be
found in ferromagnetic and ferrimagnetic materials in

parameter regimes beyond the onset of instabilities. For
a review of applications of nonlinear dynamics to solid-
state experiments see Jeffries' and Zettl. '

We have applied certain methods of nonlinear dynam-
ics to explain long-lived chaotic transients that we have
observed in spheres of YIG. We note that Gorman,
Widmann, and Robbins' have made some qualitative
observations of chaotic transients in a convection-loop
experiment using nonlinear-dynamics concepts. We
present here a detailed quantitative study of such tran-
sients in YIG, with comparison to recent theoretical re-
sults. ' ' The average time lengths of these transients,
varying by more than 5 orders of magnitude, form a very
stable feature of a system that otherwise displays great
sensitivity to initial conditions. Our findings suggest
multiple quasiperiodic attractors in prechaotic regimes of
microwave power which are distinguishable in size, di-
mension, and period type. Furthermore, the unstable
chaotic attractor appears to overlap the basins of attrac-
tion of more than one of these quasiperiodic attractors.

At small rf driving fields which are perpendicular to
the dc magnetic field, the spins precess uniformly about
the dc field. At rf fields above the Suhl instability, ener-

gy is transferred from the uniform mode of precession
into spin-wave modes. For the first-order Suhl instabili-
ty, the rate of transfer of energy into the spin waves goes
as first order in the amplitude of the uniform mode and
the first spin waves to be excited, corresponding to the
smallest critical field, have a frequency half that of the
driving frequency. We have chosen the rf frequency so
that half the frequency is within the spin-wave band for

k=0, making it possible to excite a large number of
spin-wave modes and decreasing the rf field necessary for
the onset of the Suhl instability. When two or more spin
waves are excited, their interaction produces a difIerence
frequency that modulates the amplitude of the detected
spin-wave signal. These "auto-oscillations, " with fre-
quencies ranging from 5 to 400 kHz, are what we detect
here.

In the experimental setup a 20-mil YIG sphere was
held with Apezion M grease inside a quartz tube so that
the YIG sphere was between an excitation coil and a
perpendicular pickup coil. An electromagnet provided a
dc field perpendicular to both coils, and parallel to the
easy axis of the YIG sphere. Microwave power was pro-
vided by an HP 8341A synthesized sweeper and modu-
lated with an HP 116658 modulator biased by a square-
wave generator so that the ratio of power on to power off
was greater than 40 da. The signal transmitted through
the YIG sphere was detected by a crystal detector and
amplified. The signal was digitized at 3 MHz with a
LeCroy TR8828C digitizer with eight-bit resolution to
produce a time series and downloaded to a VAX I I/780
computer or stored in a Norland 3001 waveform anal-
yzer. All measurements were made with the system
tuned to the center of the ferromagnetic resonance line
at 760 G and 2.5 GHz. The YIG sphere was weakly
coupled to the excitation coil. To insure reproducibility,
two different 20-mil spherical samples were used.

At t =0 the microwave power was turned on and left
on. Initially the spin-wave system behaved chaotically,
but after some time changed abruptly into a quasiperiod-
ic waveform. The base line of the quasiperiodic wave-
form decayed exponentially leaving only the quasiperiod-
ic motion as the asymptotic behavior of the system.
These three types of behavior, chaos, exponential decay
to a quasiperiodic waveform, and final stable quasi-
periodic waveform, may be seen in Fig. l.

The sampling of transients under a wide range of uni-
formly distributed initial conditions is essential in obtain-
ing good average transient times. ' While all experimen-
tally controlled parameters were kept the same for a
given microwave power, the individual transient lengths
fit the distribution P(t) —exp( —tj&t)), where &t) was
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FIG. 1. Detected power as a function of time after driving
microwave power was turned on, showing chaos, sudden ap-
pearance of a quasiperiodic waveform with an exponentially
decaying base line, and stable quasiperiodic waveform.
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the average transient length, indicating that immeasur-
ably small Auctuations in these parameters caused the
system to be started under a wide variety of initial condi-
tions. ' In fact, when the system was started in a
different region of phase space by our simply stepping up
the microwave power level by about 6 dB (instead of
turning it on from zero, as with the data displayed here)
the same average chaotic transient lengths were record-
ed.

The length of time of the chaotic transient averaged
over forty episodes at each power is plotted in Fig. 2 as a
function of microwave power above the critical field for
the onset of the Suhl instabilities. The relation of in-
cident microwave power and rf magnetic field at the
sample depends on the exact geometry of the sample and
driving coil, and so we consider instead the ratio of the
incident microwave power to the microwave power at the
onset of the Suhl instability by representing microwave
power in decibels above the instability. In this paper,
capital P refers to relative power units while lower case p
refers to decibels. The amplitude of the rf magnetic field
at the onset of the Suhl instability agreed well with pre-
vious work. There appear to be two distinct regions in
the plot of average transient length: one below and one
above 18.4 dB. While the general form of the curve of
average time versus power in these two regions appears
similar, there is a break in the curve at the boundary be-
tween these two regions. The average transient lengths
presented here vary over 5 orders of magnitude.

Phase-space analysis was done by our embedding the
time series of data (V~, Vq, V3, . . . ) from each transient-
decay-quasiperiodic episode in a d-dimensional phase
space by the usual method of constructing vectors from
the series by picking a delay of n data points and form-
ing the d-uple (V;, V;+„,V;+2„, . . . , V;~td —~1„) for all
points V; in the data. ' This enabled us to reconstruct
the attractor corresponding to the given time series. The
information (or pointwise) dimensions ' of the chaotic
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attractors were calculated by use of the method of Ter-
monia and Alexandrowicz. This was done for embed-
ding spaces of dimensions 2 to 10 and the slope of the
log(neighbor-order) versus log(distance) was seen to sat-
urate. The dimensions of the chaotic attractors were
found to be 2.7+ 0.2 for all microwave powers.

At the end of the chaotic transient a quasiperiodic
waveform suddenly appeared. The average voltage of
this quasiperiodic waveform (taken over an integral
number of approximate periods long after the end of the
chaotic transient) was used as the center in phase space
of the final quasiperiodic attractor. The distance in
phase space (averaged over one approximate period) be-
tween all points after the end of the chaotic transient
and this center decayed according to the relation V—exp( —at)+Vo, where Vo corrected for the nonzero
base line. The time constant a was (2.5~0.5) &10
sec ', or a decay time of (4+ 1) && 10 sec for all time
series. This may be compared with a spin-lattice relaxa-
tion time of 7 x 10 sec in YIG ' or an inverse

r.f. power (d B above insta b i I i t y)

FIG. 2. Lower graph: average temporal lengths of chaotic
transients at diAerent microwave powers above the Suhl insta-
bility. The line though these points is a fit by theory. Upper
graph: distribution of the two distinct types of final nonchaotic
attractor as determined by an examination of phase-space tra-
jectories from the data and as determined from rate equations
for average transient times. The x axis is the same as in the
lower graph.
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linewidth (hH/y) for this experiment of 5.5 x 10 sec.
Although the chaotic transient decays into many dif-

ferent quasiperiodic waveforms, depending very sensi-
tively on the initial conditions, the average behavior of
this system follows a regular pattern. In general these
final waveforms are not reproducible in detail, but recon-
struction of the corresponding attractor in phase space
reveals that they fall into two distinct classes: class-A
attractors, which have a pointwise dimension of 4, ap-
proximate periods between 1&10 sec and 5x10
sec; and class-8 attractors, which have a pointwise di-
mension of 5, are also quasiperiodic, and are smaller in

amplitude than the class-A attractors. The radius in

phase space of a class-A attractor is less than one-
quarter that of the initial chaotic attractor, while the ra-
dius of the class-8 attractor is half or less than that of
the class-A attractor. The Fourier spectra of both
class-A and -8 attractors consisted of discrete lines,
while the Fourier spectrum of the chaos was a continu-
ous band. Figure 2 shows the percentage of chaotic tran-
sients decaying into class-A and class-8 attractors. At
the lowest microwave power, most of the final nonchaotic
attractors are of type A. As power is increased, the sys-
tern quickly begins to fall more often into a class-8 at-
tractor. Figure 3 is a three-dimensional phase-space
map of a typical time series for this system. The chaotic
portion of the time series extends over most of the phase
space. Near the center is the toroidal quasiperiodic at-
tractor to which the system evolves.

The above behavior follows the general scheme for
chaotic transients according to Grebogi, Ott, and
Yorke, ' ' in which a stable chaotic attractor changes
into an unstable chaotic attractor when it collides with
the boundary of its basin of attraction at some critical
value P, of the system driving parameter. In our case,
the system driving parameter is the microwave power
and the stable chaotic attractor exists above some critical
power. Below the critical power, according to this
theory, some portion of the chaotic attractor overlaps the
basins of attraction of stable nonchaotic attractors, the
aperiodic or quasiperiodic final states in our case. De-
pending very sensitively on initial conditions, the system
will initially spend some length of time following the
chaotic attractor. As soon as the system trajectory
reaches the region where the chaotic attractor overlaps
the basin of attraction of the nonchaotic attractor, the
system will leave the chaotic attractor and move toward
the nonchaotic attractor. Grebogi, Ott, and Yorke'
have determined from numerical experiments and heuris-
tic arguments that the average length of time that the
system spends on the chaotic attractor should depend on
the system driving parameter P (here the microwave
power in relative power units) as (t) =K/(P, P) ". —

This result should be true for a system where the
chaotic attractor overlaps the basin of attraction of one
nonchaotic attractor. In this spin-wave system, however,

i+n

FIG. 3. Three-dimensional phase-space plot with time delay
n =4 (see text) showing the chaotic attractor filling most of the
phase space and changing into a quasiperiodic attractor, which
appears as a dark toroidal region near the center of the plot.

there are two distinct types of nonchaotic attractors
present after the end of the chaos: one more prevalent
below the break in the plot in Fig. 2 and one more pre-
valent above. The system trajectory while in the tran-
sient is long, convoluted, and entangled, suggesting that
the overlap of the metastable strange attractor with the
basin of attraction of either final, nonchaotic attractor is
small. This suggests that there are two independent
parallel and competing paths for an exit from the chaotic
regime. Therefore we fitted the transient length versus
power curve as the decay of the chaotic transient into
two difIerent attractors using the function

(t) =KiK2/[K2(P, i P) '+Ki(P, 2
—P—) '].

The fit is very good, with p, &
=21.8 dB and y& =13.0 and

p, 2=25.9 dB and @2=6.1. These values were used to
plot the "theoretical" distribution of final attractor types
in Fig. 2 from rate equations based on the above expres-
sions for (t).

The general behavior of the system fits well with the
following scenario. At the lowest powers studied, the
chaotic trajectory in this spin-wave system overlaps the
basins of attraction of two nonchaotic at tractors. At
these low powers the system falls into the class-A attrac-
tor (corresponding to y~ and p, ~) more often than the
class-8 attractor. As power is increased, the overlap be-
tween the chaotic attractor and the class-A attractor's
basin of attraction decreases more rapidly than the over-
lap between the chaotic attractor and the class-8
attractor's basin, resulting in the larger yi value. Near
17 to 18 dB there is a crossover in rates at which the sys-
tem falls into the class-A attractor or the class-8 attrac-
tor, and the distinct change in the transient length versus
power curve appears. Long-lived chaotic transients
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which are excited fit an extended Grebogi-Ott- Yorke
scheme. ' ' The average lifetimes of these transients
are a very stable feature of a system that is otherwise
very sensitive to initial conditions and parameter
changes.
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