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Half Width of Neutron Spectra
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We analyzed for the first time systematically the half widths of a great variety of neutron spectra of
simple dense classical fluids as functions of wave number and density. We find that the observed behav-
ior of the half width near its minimum value can be understood quantitatively on the basis of a generali-
zation of a diflusion model, proposed before.

PACS numbers: 61.12.—q, 05.20.Dd, 61.20.Ja, 61.20.Lc

Since the work of de Gennes' it has been noted that
the normalized second frequency moment cop(k) of the
dynamical structure factor S(k, co) of the coherent neu-
tron spectra of simple dense fluids has a sharp minimum
at values of the wave number k such that ka =2+, where
o characterizes the size of the fluid particles. This fol-
lows immediately from the exact expression for cop(k),

cop(k) = [(co')/(co')] ' ' =k [PmS(k)]

Here (co")=f—+ dcoco"S(k, co) is the nth frequency
moment of S(k, co), P=I/kaT, where ka is Boltzmann's
constant, T the temperature of the fluid, I the mass of a
fluid particle, and (co ) =S(k) the static structure factor,
which has a sharp maximum near ka =2m. This max-
imum in S(k) causes a minimum in cop(k) which, for a
Gaussian S(k, co), implies a minimum of the half width
at half height coH(k) of S(k, co), since for a Gaussian
S(k, co ) coH (k ) = 1 . 1 8 cop (k ) .

In addition, as was particularly emphasized by Egel-
staff, the observed deviation of (co ) from its Gaussian
value of 3(co ) /(co ) implies a further sharpening of
S(k, co) that leads to an additional reduction of the
linewidth near ko. =2m. Moreover, it has been noted
that the oscillations in cop(k) are roughly in phase with
the oscillations in the half width at half height coH(k), '

so that, in general, a minimum in cop(k) is indicative of a
minimum in coH(k). This similarity between cop(k) and

coH (k) is only qualitative, however.
A physical picture for the behavior of coH(k) was pro-

posed many years ago by EgelstaA and Skold. These
authors associated coH(k) with the inverse lifetime of a
non propagating diff'usive mode of the fluid. In this
Letter we show quantitatively that for sufficiently high
densities, coH(k) can indeed be interpreted, in the region
of its minimum near kcr =2m, in terms of an inverse re-
laxation time, which is related to the very slow structural
relaxation of a density fluctuation in a dense fluid via a
self-diffusion process.

We consider experimental data for coH(k) as a func-
tion of wave number and density for a variety of simple
fluids (krypton, argon, neon, ' and rubidium ' '), as
well as for model fluids consisting of Lennard-Jones' '
or hard-sphere particles. ' '

In Figs. 1(a)-1(e), the reduced half width at half
height coHt as well as not alc IcpIcscntcd as functions
of the reduced wave number ko. for dense Kr, Ar, and
Rb under a number of diAerent conditions, where the
characteristic time t = (pm ) 'I ct/2 in all cases. We note
the following:

(a) In Fig. 1 we have ordered the neutron-scattering
data with respect to increasing reduced density Vp/V
=nct3/J2. Here Vp is the volume V at close packing of
an equivalent hard-sphere fluid, where the hard-sphere
diameter cr is determined by the condition that the first
peak in S(k) of the equivalent hard-sphere fluid and the
corresponding real fluid coincide. Vp/V =0.45, 0.53,
0.58, 0.625, and 0.653 in Figs. 1(a)-1(e), respectively.

(b) Although the thermodynamic states of Kr and Ar
in Fig. 1(a) correspond to each other, considerable de-
viations between their neutron spectra are found which
are not understood at present. However, their observed
values for coHt [cf. Fig. 1(a)] and copt are identical for
ko in the neighborhood of the de Gennes minimum in

cop(k), the region of interest to us here.
(c) The data for coHt and copt of Ar displayed in Fig.

1(b) are, for all k, indistinguishable from those of neon'
and those of a Lennard-Jones fluid' at corresponding
thermodynamic states.

(d) Molecular-dynamics data for coHt and copt of
hard-sphere fluids at the reduced densities Vp/V=0. 58
(Ref. 14) and Vp/V=0. 625 (Ref. 15) agree well with
the coHt and copt displayed in Figs. 1(c) and 1(d), re-
spectively, in particular in the neighborhood of the de
Gennes minimum. '

(e) One observes in Fig. 1, in agreement with earlier
observations by Egelstaff on liquid Ar, that cop(k )
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ing in Fig. 1(e), where top(k)/coH(k)=1 for kcr=20
and cop(k)/coH(k) =4 for ko near the de Gennes min-
imum.

Since coH(k) is related to intermediate values of co in

S(k, co), it refers to physical processes on an intermedi-
ate time scale. In fact, for the dense fluids and the k
values considered here, it is a self-diff'usion-like process
of the particles in the fluid that enables a density fluctua-
tion to relax. This process is well known in the theory of
structural relaxation of dense fluids. '

Although no theoretical expression for toH(k) is avail-
able for real fluids like Ar or Ne, or for model Lennard-
Jones fluids, such an expression has been derived, albeit
approximately, for a dense hard-sphere fluid. This for-
mula for coH(k) in the neighborhood of the de Gennes
minimum reads' '
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FIG. 1. Reduced half widths coH(k)t as functions of ko.
(a) Crosses, Kr at T =297 K and n =13.84 nm ' (o =0.359
nm, t =1.05 ps) (Ref. 5); circles, Ar at T=212 K and
n =17.0 nm (cr=0.334 nm, t =0.77 ps) (Ref. 9). (b) Ar at
T =120 K and n =18.5 nm ' (cr=0.343 nm, t =1.03 ps)
(Ref. 7). (c) Ar at T =120 K and n =20. 1 nm ' (o.=0.343
nm, t =1.03 ps) (Ref. 7). (d) Ar at T=86 K and n =21.3
nm ' (cr=0.346 nm, to=1.30 ps) (Ref. 6). (e) Rb at T =315
K and n =10.6 nm 3 (cr=0.443 nm, t =1.27 ps) (Ref. 11).
Also shown are the reduced (kco)ot (dashed line) [cf. Eq. (I)]
and the theoretical coH(k)t (dotted line) [cf. Eq. (2)l. The
vertical arrows point to the values of ko. where k =I ', an

upper bound for the wave number for which Eq. (2) is valid for
coH(k). Note the minima at k =k* near kcr=2rr

~ coH(k) and that the ratio cop(k)/coH(k), which in-
creases for 4 ~ ko ~ 10 with increasing density, strongly
depends on k, at fixed density. This is particularly strik-

coH(k) = [DEk /S(k)]d(k),

where, in very good approximation,

d(k) = [I —jp(kcr)+2jz(kcr)]

(2a)

(2b)

Here DE is the self-diffusion coefficient of the hard-
sphere fluid in the Enskog theory ' and jp(x) and j2(x)
are the zeroth- and second-order spherical Bessel func-
tions, respectively. For a plot of d(k) and S(k) we refer
to Ref. 13. Equation (2) only holds for high densities
and intermediate values of k: 1 & ko & cr/1, where
o/1»1. For in the derivation of Eq. (2) the conserva-
tion laws for the local microscopic velocity and energy
have not been taken into account. Since these are
relevant only for density fluctuations with wavelength
k =2tr/k much larger than o, Eq. (2) applies when
ko & 1. In addition, since self-diffusion-like behavior ob-
tains for density fluctuations only when their wavelength
k is much larger than the mean free path between col-
lisions 1, Eq. (2) applies when kl & l.

In Fig. 1 we compare in detail the theoretical coH(k)
as computed from Eq. (2) for an equivalent hard-sphere
fluid with the experimental values for to~(k), as a func-
tion of k. One notes that for the region where Eq. (2)
applies, the experimental coH(k) are far better described
by the theoretical coH(k) than by cop(k), in particular at
the higher densities and ko. near 2x.

A similar comparison can be made for toH(k) as a
function of the density n coH(k), .as given by Eq. (2),
depends on n via DE/S(k). Although DE/S(k) is a
quantity that refers to an equivalent hard-sphere fluid,
one would expect that its density dependence reflects the
dramatic increase in difficulty of fluid particles to diffuse
past each other in a dense fluid, when the density in-
creases. This is borne out in Fig. 2. Here the experi-
mental values coH(k*) of toH(k) at k =k*, where the
minimum of coH (k ) occurs, are plotted, which strongly
decrease with increasing density. In addition, this de-
crease is very well described by the minimum values
coH(k*) of the theoretical coH(k) of Eq. (2). One also
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wards the ideal-gas limit of 1.]geon(k) at very low densi-
ties.
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FIG. 2. Lozenges, density dependence of coH(k*)t for Ar
at 212 K (Ref. 9); inverted triangle, Kr at 297 K (Ref. 5); cir-
cles, Ar at 120 K (Refs. 7 and 8); squares, Ar at 86 K (Ref. 6);
triangles, Rb at 315 K (Ref. 11); and crosses, a Lennard-Jones
fluid at kaT/eLt =1.71 (o =0.981oLJ) (Ref. 22). Also shown
are the density dependences of too(k*)t (dashed line) [cf. Eq.
(I)] and the theoretical toH(k*)t (dotted line) [cf. Eq. (2)].

sees in Fig. 2 that ton(k*) shows only a very weak densi-

ty dependence which is markedly diff'erent from that of
AH(k*). The experimental results for toH(k*) repre-
sented in Fig. 2 are those given in Refs. 5-9 and 11 for
Kr, Ar, and Rb, as well as these of recent molecular-
dynamics simulations for a Lennard-Jones fluid at nine
different densities, at the reduced temperature kaT/
eL~ =1.71, where t. Lq is the Lennard-Jones potential well
depth. We conclude from Figs. 1 and 2 that for dense
Kr, Ar, Ne, Rb, and Lennard-Jones and hard-sphere
fluids, ' ' the behavior of AH(k) with ko near 2tr can be
understood on the basis of Eq. (2), i.e., a self-diffusion
process.

We end with two remarks:
(1) The expression (2) for AH(k) of the half width of

S(k, to) of a dense hard-sphere fluid in the neutron-scat-
tering regime is analogous to that of a dilute colloidal
solution of polystyrene spheres in the light-scattering re-
gime. This has been discussed elsewhere.

(2) Equation (2) describes the density behavior of
roH(k*) as long as k* & I ', i.e., for reduced densities
down to Vn/V =0.35 (cf. Fig. 2), where k *=2tr/a
= I '. We see in Fig. 2 that for Vn/V&0. 35, the
experimental toH (k *) show a tendency to approach
too(k ), i.e., towards ideal-gas-like behavior. This might
suggest a continuation of the experimental points in Fig.
2 with decreasing density through the ron(k) curve to-
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