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Origin of Chaotic Relaxation Oscillations in an Optically Pumped Molecular Laser
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We show that pump-induced modifications to the gain and dispersion profiles can induce a weak side-
band modulation which acts as a driving term to sustain chaotic relaxation oscillations in a single-mode,
resonant, optically pumped molecular laser. Our study suggests that a careful two- or more-parameter
unfolding of higher-codimension bifurcations should lead to a wealth of nonlinear dynamical behavior

within easy access of current experiments.

PACS numbers: 42.50.Tj, 42.55.Em

Random spiking or sustained relaxation oscillations
have been observed in a wide class of lasers from their
very inception. However, a clear physical or mathemati-
cal explanation of these effects has, with the exception of
two cases, "2 remained elusive despite substantial theo-
retical literature on the topic and recent interest in po-
tentially chaotic laser systems.® In this Letter we pro-
vide a clear physical and mathematical mechanism for
sustained chaotic relaxation oscillations in a single-mode,
homogeneously broadened laser. Moreover, for our sys-
tem, an optically pumped molecular laser, we show with
a parallel bifurcation analysis that the chaotic motion is
associated with a random motion on an attracting set as-
sociated with a homoclinic orbit in phase space (double
saddle connection). This latter analysis allows us to es-
tablish unambiguously (i) a preturbulent regime with
eventual collapse onto a stable periodic orbit or cw lasing
state, (ii) a chaotic window truncated by the onset of a
pump-induced stable Rabi sideband oscillation, and (iii)
regimes of spontaneous pulsations from both a lasing and
nonlasing state.

Optically pumped molecular lasers comprise three lev-
els with the pump and laser transitions sharing a com-
mon level, as shown in the inset in Fig. 1(a). Attempts
to truncate the equations describing their dynamics to
effective two-level systems of the Haken-Lorenz type* in-
volves among others the assumption of a polarization de-
cay rate for the pump transition which is considerably
greater than that for the lasing transition,> an unrealistic
condition for real molecular systems. Such unphysical
truncations are reminiscent of the situation encountered
in fluids where the Lorenz equations represent a severe
truncation of the original Navier-Stokes equations. In
the present laser context the coherent interaction be-
tween the pump and lasing emission is suppressed, elim-
inating the important physics associated with pump-
induced Rabi sideband oscillations. In this Letter we
emphasize the unique role of the pump laser as a control
parameter which, through such coherent interactions, al-
lows one to tailor the gain profile seen by the lasing emis-
sion. This unique feature of optically pumped molecular
lasers enables us to separate the dynamical features asso-

ciated with the laser emission field from those of the
pump field over physical parameter ranges which are
well within reach of current experiments.® The present
study suggests that much of the rich dynamical behavior
of this system remains to be discovered within a careful
two- or more-parameter unfolding of higher-codimension
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FIG. 1. Bifurcation diagrams for (a) 5 =0.8 and (b) b =0.2.
Plots show laser-emission amplitude g at line center vs pump
amplitude a. The solid lines denote stable cw operation and
the dashed lines unstable cw operation; the filled circles are
branches of stable periodic solutions and the open circles
branches of unstable periodic solutions. Inset in (a): A
schematic of the three-level system under study. Inset in (b):
A blowup of the region near HBI.
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bifurcations.

Our physical model of the optically pumped molecular
laser is depicted in the inset in Fig. 1(a). An external-
cw-pump laser selectively populates the upper lasing lev-
el 2 which can then undergo lasing action to the lower
lasing level 3. The equations describing laser action are
a simple generalization of the semiclassical equations of
Sargent, Scully, and Lamb’ to a three-level system.
They are derived by coupling of the classical Maxwell
electromagnetic field equations to the three-level den-
sity-matrix equations and imposition of a self-consistency
requirement. The result for the general detuned case is
the following set of coupled ordinary differential equa-
tions:

B=—(cB+igpas),

pa1=—(1—=1i8,)pa+iaD2 —iBpsi,
p23=— (1 —i8)p3+iBD2; —iapi,
p31=—I[1+i(5,+8,)1p31 —iB*p2 +iap%;,

Dy=—b(+D3)—4Im(a*ps) —2Im(B*p13),
D23= —bD23—2Im(a*p21) “4Im(l3*P23).

Here B refers to the complex lasing field amplitude, p;;
are the off-diagonal density-matrix elements representing
atomic coherences, and D;; refer to the pump and laser
signal population inversions. The pump-laser amplitude
a is assumed constant, g the unsaturated gain is depen-
dent upon the lasing-material properties, o is the cavity
damping constant, and b =T/y measures the ratio of en-
ergy to dipole relaxation rates; 8, and &, refer respec-
tively to the detunings of the pump (1-2) and generated
laser emission (2-3) from line center [see inset in Fig.
1(a)]. All parameters are normalized to the dipole de-
cay width (y) and the dimensionless time is in units of
this latter parameter. We assume for simplicity that the
dipole decay rates for each off-diagonal density-matrix
element are equal (y) and that the energy relaxation
rates for each atomic level are also equal (I"). In the fol-
lowing, we assume that the pump laser is resonant with
transition 1-2 and fix the unsaturated gain g =50 and the
cavity loss o =10.

Partial results from an extensive bifurcation analysis
of the above system of ordinary differential equations are
given in Fig. 1 for the simplest case of an on-resonant
pump (8, =0) and laser line-center emission (&, =0).
The nature of the global dynamics of the equations is a
sensitive function of the magnitude of the parameter b.
For b close to unity the bifurcation behavior is simple, as
shown in Fig. 1(a) for »=0.8. As the external pump
amplitude is increased the system undergoes a pitchfork
bifurcation from a nonlasing to a cw (steady) lasing
state (BP1) at «=0.3. This is simply the first laser
threshold. With stronger pumping, the lasing-emission
amplitude initially grows and then begins to drop off

rather rapidly and the laser eventually turns off (BP2) at
a=1.48. At higher pump amplitude (a=1.69), the
laser again turns on via a Hopf bifurcation (HB1) to a
stable periodic oscillation [branch in Fig. 1(a) denoted
by filled circles] which dies out at larger a (= 2.9) (re-
verse Hopf bifurcation at HB2).

The effect of decreasing the parameter b is shown in
Fig. 1(b), where at b=0.2 the left-hand Hopf bifurca-
tion point (HB1) at @ =0.9 has migrated to the left and
onto the lasing branch. This movement to smaller a is
smooth as a function of decreasing . The Hopf bifurca-
tion point, now on the lasing branch, is commonly re-
ferred to as the second lasing threshold. A simple calcu-
lation shows that the frequency at this Hopf bifurcation
point is nearly coincident with the natural relaxation os-
cillation frequency . of the laser. The branch of
periodic solutions emanating from the Hopf bifurcation
point is denoted by filled circles when stable and by open
circles when unstable. The periodic branch is now more
complicated containing a finite region of pump ampli-
tude a where no stable solutions appear. This narrow
window in a (0.905 < a <1.145) corresponds to the
chaotic lasing region. A blowup of the periodic branch
near the leftmost Hopf bifurcation point is shown as an
inset in Fig. 1(b). In contrast to the Lorenz model, the
bifurcation here is supercritical with the stable limit cy-
cle losing stability at the limit point (change to open cir-
cles) and the resulting period of the unstable limit cycle
rapidly increasing with decreasing a. This suggests that
a branch of homoclinic bifurcations should exist in a
two-parameter unfolding. We have in fact located an
unstable periodic orbit of large period (period=2040)
which comes very close to the unstable saddle (nonlasing
state). Full details of this analysis will be published else-
where. The limit point at @ =0.905 on the branch of
periodic solutions in Fig. 1(b) (see inset) marks the onset
of chaotic random spikings. The narrow region between
HBI and this limit point is the preturbulent region where
initial random spikings are eventually trapped on the
stable limit cycle. Below HBI1, a preturbulent regime ex-
ists where eventual collapse occurs onto the stable lasing
state. The point (a=1.145) where the chaotic window
ends corresponds to the change from unstable to stable
limit-cycle behavior on the periodic branch. This latter
branch eventually terminates on the nonlasing branch at
a=3.84 (HB2).

The physical picture of the periodic and chaotic
motion can be understood from the plots of the laser out-
put amplitude and the corresponding cavity dispersion
curves versus normalized detuning, as shown in Fig. 2 for
b=0.2. Immediately above threshold at a=0.18, the
laser-emission profile is single humped and the corre-
sponding dispersion is characteristically anomalous. The
dip in the emission profile and strong modification of
dispersion near line center at a =0.9 [HBI in Fig. 1(b)]
result from pump-induced Rabi splitting of states 1 and
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FIG. 2. (a) Modulus of the laser amplitude 8 and (b) cavity
dispersion relation against laser signal detuning &5 for b =0.2.
The laser amplitude B at ;=0 coincides with the branch of
steady-state solutions in Fig. 1(b).

2. At a=1.25, two new intersections appear with the
straight cavity line suggesting the possibility of sideband
oscillation.® The preceding bifurcation analysis, howev-
er, shows that stable oscillation occurs just beyond
a=1.145 terminating the chaotic oscillation. Sideband
oscillation frequencies determined from the dispersion
analysis agree with the exact predictions of the bifurca-
tion analysis for large @ (=2) but deviate for low a
(~15% for a=1.5) where the small-signal treatment
implicit to the former analysis is approximate.® This ac-
counts for the slight deviation between values of a (1.145
and 1.25) for the transition to sideband oscillation from
the two treatments. The line-center laser emission drops
below threshold at @ =1.29, as shown in Fig. 1(b). The
transition from low-amplitude oscillation to nonlasing
state at a =3.84 [HB2 in Fig. 1(b)] is accurately cap-
tured in Fig. 2(b) where the double-humped gain region
has just shifted outside the cavity dispersion curve inter-
section line.

The physical picture of the chaotic motion is now
clear. The pump laser induces a strong distortion in the
gain (inverted dip at line center) and dispersion charac-

2870

D. ) 04

FIG. 3. Trajectories showing graphs of the laser inversion
D23(1) vs laser-emission amplitude B(¢) at (a) «=0.908 and
(b) a=1.14 in the chaotic region of Fig. 1.

teristics of the homogeneously broadened laser line lead-
ing to a dynamic modulation which can sustain the laser
relaxation oscillation. With further increase in pumping
a sharp transition occurs from periodic relaxation oscilla-
tions directly to chaotic motion. A sharp return to stable
Rabi sideband oscillations occurs at larger pump ampli-
tude as a consequence of the appearance of new side
modes resonant with the cavity frequency. The differing
chaotic-attractor topologies evident in Fig. 3 reflect the
physically distinct processes operative in the laser at
different pumping levels. At «=0.908 [Fig. 3(a)] the
chaotic motion involves unstable outward spiraling mim-
icking the motion in the neighborhood of the nearby un-
stable limit cycle. This motion is confined predominantly
within the positive and negative amplitude lobes defined
by the stable and unstable manifolds of the nonlasing
saddle point (8=0 in Fig. 1) and manifests itself physi-
cally in the intensity dynamics as random large-
amplitude excursions followed by ringing oscillations. At
larger pumping (a =1.0) the chaotic motion in Fig. 3(b)
occurs about an unstable Rabi sideband limit cycle giv-
ing rise to a symmetric (about 8=0) chaotic attractor.
Intensity outputs now occur as sequences of pulses with
intensities frequently dropping close to zero lasing inten-
sity. Both of these types of dynamical pulsations are
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characteristics of a wide variety of unstable laser systems
irrespective of the physical mechanism responsible for
oscillation.

The ease with which the Hopf bifurcation points HBI
and HB2 can be translated along the branches of
steady-state solutions by the variation of either b or the
cavity loss indicates that branches of homoclinic orbits
can be tracked under two- or more-parameter unfold-
ings.'® A wealth of chaotic scenarios associated with
homoclinic bifurcations then becomes possible.
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