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Intensity Correlation Functions and Fluctuations in Light Scattered from a Random Medium
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The propagation of light in a disordered medium with purely elastic scattering is considered. The in-
tensity correlation functions for the diAusely reflected and transmitted light from a slab are shown to
have long-range power-law behavior. This arises from the interference of the underlying wave fields of
the diflusive modes of the light intensity. This interference also gives rise to anomalous fluctuations in
the transmission coe%cient analogous to conductance fluctuations in metals.

PACS numbers: 42.20.-y

There has been considerable interest recently in the
propagation, multiple scattering, and localization of
waves in disordered media. The eA'ects of weak localiza-
tion give rise to coherent backscattering which has re-
cently been observed. ' Large intensity fluctuations in

light scattering are also seen. In this Letter we discuss
the intensity fluctuations and correlation functions of
light scattered from a disordered medium. A large
amount of literature on the subject of multiple scattering
exists, and for recent reviews we refer to Ishimaru and
Goodman. However, little systematic work on fluctua-
tions and correlation functions in multiple scattering has
been done. Shapiro has recently considered the fluctua-
tions in the light scattered from a point source in a disor-
dered medium. His results correctly give the behavior of
the correlation functions at short distances (less than a
mean free path l ) but not at large distances. This is dis-
cussed further below. Analogous problems to those con-
sidered here arise in the conductance and its fluctuations
of electrons in disordered metals, and there has been
considerable experimental and theoretical ' interest
recently in this area. The relation of these results to
those in this Letter are discussed below.

We consider an elastic scattering medium in the form
of the slab of area 2 and thickness L„all dimensions be-
ing greater than 1. The area is uniformly illuminated
with monochromatic light of wave vector k =co/c at nor-
mal incidence. We are interested in the light which is

diffusely reflected or transmitted from the slab. We
define cumulant correlation functions for reflection r and
transmission t:
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E(O, I) I
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where E is the field of the scattered light. We take this
to be a scalar as only the scalar-type modes show dif-
fusive behavior. ' The plane of incidence of the light is
z =0, and for reflection we evaluate the scattered field on
the plane z = l and for transmission on the plane z
=L —l. This choice only afI'ects the numerical value of
the results. R is a point on the transverse surface z =l or
L —l. Light can only escape from the surfaces z =0, L

of the slab and reflecting boundary conditions are im-
posed on the other surfaces.

Shapiro has considered correlation functions such as
(1) for the case of a point source of light in an infinite
medium. His results are obtained by the assumption
that the correlation functions factorize, e.g. ,

C " (R) =
I (E(R,I)E"(0, l)) I

and in the above geometry give (for unit incident intensi-
ty)
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where the C are numerical constants of order 1. Equa-
tions (2) predict that the correlation functions decay in a
mean free path and within this length exhibit a rapidly
varying structure determined by the wavelength. These
results are only correct for R ( l. If we set R =0 in (2),
we obtain the large intensity fluctuations discussed by
Shapiro and well known as the speckle patterns ob-
served in scattering of light from random media.

The motion of the light in the disordered medium is
diffusive as the scattering is purely elastic, and the long-
range behavior of the correlations functions (I) is due to
the interaction of diff'usion modes in the scattering medi-
um. The leading diagrams in an expansion in (kl) ' for
the correlation functions are shown in I ig. 1. The corre-
lation functions (1) involve four fields, and in these dia-
grams we have two diffusion modes which interfere in
the medium because of the underlying wave field. This
interference occurs in the bulk of the medium and, as
diffusion is a long-range phenomenon, this eA'ect leads to
long-range correlations varying essentially as R
Similar diagrams arise in the electrical conductivity. '

A straightforward calculation following previous meth-
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F«R & L, C ' (R) —e 1 and decreases expo-
nentially. It should also be noted that the correlation
functions are proportional to the small parameter
(kl) -'.

These results can be generalized to the case where
there are two incident beams diff'ering in frequency by

We are interested in the correlation function of the
scattered light intensity at m and co+km:

C (R) =(i E„(R,z) i i
E (O, z) i )„(6)

where z =1 or L —l. Another length y
' =(2cl/3hzu) '

now enters, and we suppose that this length is compara-
ble to R and L and define dimensionless parameters
P~ = yR and Pz = yL In th.e Shapiro approximation the
correlation functions (2) decay exponentially with P(t
and Pz. The correlation functions (3) and (4) now be-
come

3

FIG. 1. Interaction of diffusion modes for an intensity corre-
lation function C(Ri R2). The light is incident at 0. Lines
with arrows directed from 0 to Rl 2 are retarded F. fields, and

the reverse arrows indicate advanced F* fields. The dotted
lines indicate impurity scattering. Note that there is an impor-
tant cancellation between (a) and (b) and (c) as discussed by
Hikami (Ref. 13).

ods ' gives
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where C,' is a numerical constant, and
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where Jp is a Bessel function. There are other diffusion
interference diagrams in which the interference takes
place near the surface of the sample. These diagrams
contribute terms of the same order as in (3) in reflection
but only higher-order efl'ects to (4) in transmission.

The intensity correlation function (3) and (4) have a
power-law form for R ) 1. They are of the same order of
magnitude as (2) for R =1. We have supposed that the
transverse dimension of the slab 8 ' ))R. In transmis-
sion the correlation functions depend on R/L and, for
R/L & 1, F(R/L) = —I+ (R /4L )(,(3), where t, is a
Riemann zeta function, and thus C ' varies slowly with

c.".(R)=, , — [C.'+P~F, (/3~)],

where

4 pOO

Fp(PIt ) =—
J dq q Ko(q)/(q +P)t),

where Kp is a Bessel function.
In transmission,

r
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where C "(R) is given in (4).
In reflection, the frequency diff'erence does not have an

important efI'ect because in reflection it is not necessary
that all dift'usion paths be long. In transmission, the
correlations decrease as Pz

' for Pz & 1. For yl & 1, the
correlation function (6) goes to zero rapidly.

It is also possible to consider the correlation function
of the diffusely scattered light emitted at different an-
gles. We again consider the slab geometry in which
monochromatic light is incident normally on the surface
and determine the correlation function for the light emit-
ted from a point on the surface in directions making an-
gles + 0/2 with respect to the normal (for either re-
flection or transmission). It is not difficult to show that
this correlation function, C "(0) say, is proportional to
the Fourier transform of the correlation functions (1) in

the plane of reflection or transmission. Let

C'""(R)= f
2q eiq RC (r, ) (q ). (9)

(2z) ' "
then C "(0) —C " (q) with momentum transfer

q =2k sin(0/2). For small angles we find
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In the reflected case the correlations vary slowly with an-
gle, while in the transmitted case there is an initial rapid
decrease at qL —1 followed by a similar slow decrease.

Finally we turn to a discussion of the reflection and
transmission coe%cients r and l, respectively, which we
define for unit incident intensity by

r =—J~d R
~
E(R, /)

~

1

d R iE(R,L —l) i

1

in the intensity correlation functions. It would be of in-
terest to observe these correlation functions experimen-
tally. The intensity fluctuations also lead to fluctuations
in the reflection and transmission coe%cients. These
fluctuations are analogous to the universal conductance
fluctuations in metals. The optical case considered here
provides the opportunity to observe the long-range corre-
lations responsible for reflection and transmission fluc-
tuations.

This work was supported in part by the National Sci-
ence I=oundation under Grant No. DMR-84-05619.
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From the correlation functions obtained by Shapiro
[Eqs. (2)], a similar result to (12) is obtained while, for
transmission, a contribution smaller than (13) by a fac-
tor l/L is obtained. Equation (13) diA'ers from the
universal conductance fluctuations found for metals be-
cause only a single incident channel is excited in the op-
tical case, but the implications are similar. The assump-
tion of uncorrelated fluctuations' in each transmission
channel leads to a result smaller than (13) by a factor
l/L Thus the interfer. ence of the diftusive modes leads
to important correlations between the diflerent transmis-
sion channels.

In conclusion, the transport of light energy in a disor-
dered medium with purely elastic scattering is diflusive
in nature. The underlying wave field gives rise to in-

terference effects between diftusive modes. The long-
range nature of diA'usion leads to long-range correlations

The averages of these quantities are (r) —1 and &t) —l/L.
Similar quantities are considered in the conductance of
electrons in metals. An important difference is that in
the present case the light incident on the slab excites a
single incident channel. A quantity analogous to the
average conductance is obtained by multiplying (t) by
the number, Ak, of incident channels. The fluctuations
in r and t follow from the Fourier transforms of (1).
Thus from (9) and (10)
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