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Causes for Nuclear Collective Flow Revealed by Its Mass Dependence
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The energy, multiplicity, and mass dependences of the exclusive observable “flow” for heavy-ion reac-
tions are studied in a model which includes mean-field but lacks compression effects. The energy and
multiplicity dependences of recently published Plastic-Ball data are qualitatively reproduced but the
mass-number dependence is not. This as well as the comparison with other models at present favors
viscous hydrodynamics with an ideal-gas equation of state and a closely related microscopic reaction
mechanism as candidates for yielding a “flow” compatible with the Plastic-Ball analysis.

PACS numbers: 25.70.Np

Exclusive measurements of particles emitted in high-
energy collisions of two massive nuclei exhibit sideward
flow.! There is generally agreement that at least part of
this arises from the presence of the nuclear mean field.
However, whether the flow mainly originates from the
attractive or the repulsive contributions to the force is
subject to discussion.?® This question is closely related
to the fundamental problem of how to gain insight into
the equation of state of nuclear matter far away from its
ground-state properties.

The recently proposed average transverse momentum
per nucleon as a function of rapidity* is a sensitive indi-
cator of sideward flow. Still, this observable is influ-
enced by unwanted spectator-particle contributions. To
avoid these a closely related quantity has been intro-
duced®: the “flow” which is essentially the slope of the
average transverse momentum taken at midrapidity.
The dependences of the flow on multiplicity M, beam en-
ergy Eo, and mass number 4 have to some extent been
experimentally studied.’ In the present work it is argued
that measurements of this type provide a crucial test for
the origin of the sideward flow.

We base our investigation on Boltzmann’s theory of
dilute gases with two separate mean force fields. These
fields arise from two distinct classes of nucleons which in
the nucleus-nucleus center-of-mass (c.m.) frame move
in forward and backward directions, respectively, imply-
ing transparency of a high-energy heavy-ion reaction.
Through both of these moving potentials, each partici-
pant nucleon receives a momentum transfer. The net re-
sult 8,(b) with the number of binary collisions 7 and the
impact parameter vector b is, in general, different from
zero. Within reasonable approximations we obtain the
time-integrated solution of the Boltzmann equation, i.e.,
the nuclear momentum distribution for given impact pa-
rameter, P(b;p), in closed form.®

The average transverse momentum per nucleon with
the (x,z) plane as reaction plane is

Px - fdpx dpypxP(b;p)
< N >(b’p2) Tdpy dp, P(b;p) ey
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The flow is defined by

d{p./N)
d(Pz/PO)

where py is the initial c.m. momentum per nucleon. For
both (1) and (2) we obtain analytic expressions® whose
key quantity is the net transverse momentum transfer &,
discussed above.

The results of our model calculations for the specific
reaction Nb+Nb are displayed in Fig. 1. In part (a) the
average transverse momentum per nucleon for central
collisions is shown as a function of the c.m. rapidity y .
The differences between the curves with and without
momentum-dependent force terms are typically of the
order of (20-30)%.% Figure 1(b) displays the flow as a
function of the beam energy per nucleon without multi-
plicity restriction, again with and without momentum
dependence. The flow is seen to vary smoothly with en-
ergy, exhibiting a broad maximum at roughly 500 MeV
per nucleon. In Fig. 1(c) the dependence of the flow on
the impact parameter to nuclear radius #/R is shown
under the assumption of a linear relationship with the ra-
tio of multiplicity to maximum multiplicity M /M na.y.°
Observe that the flow possesses a maximum at b= R
corresponding to an intermediate multiplicity of M
== 0.6M nax [cf. Fig. 1(d)]. The shape of the flow has a
strong similarity with that of the flow angle calculated
within the same approach.® This is plausible because it
turns out that for our model

fb) = (2)

>
p:=0

S=yo(r—1)sinb;cosb;. (3)

Here, yy is the initial c.m. rapidity, r is the aspect ratio
(i.e., the ratio of the largest to the smallest principal axis
of the kinetic energy flow tensor), and 0y is the flow an-
gle (i.e., the angle between the largest principal axis and
the beam axis). Relation (3) holds for beam energies
<400 MeV per nucleon. In our model the aspect ratio
is a slowly varying function of the impact parameter
whereas the flow angle changes much faster, with its
maximum value at b =R.?
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FIG. 1. Mean transverse momentum per nucleon {p./N) and flow per nucleon for the reaction Nb on Nb. The solid and dashed
lines represent the model calculations with and without momentum dependence, respectively. The circles denote the experimental
results (Refs. 5 and 7) and in (b) and (d) are connected by lines to guide the eye.

According to (3) the flow f is a combination of both
the deviation of the aspect ratio from unity and of the
flow angle such that f vanishes (i) for spherical events,
(ii) for zero flow angle, and (iii) for a flow angle of 90°.
The physics content of (i)-(iii) is as follows. Case (i)
occurs in the global thermal (“fireball”) model, case (ii)
in cascade models with a dominance of quasifree scatter-
ing (“first-collision”” models), and case (iii) in the hydro-
dynamical model of Buchwald ez al.'® at zero impact pa-
rameter. Hence it appears that the essence of relation
(3) is rather general even though the precise form of (3)
may differ for different model prescriptions. i

Our numerical results for fixed mass number exhibit a
behavior qualitatively similar to that of the correspond-
ing experimental data denoted by the circles in Fig. 1,
keeping in mind, however, that the detector response pos-
sibly influences the energy dependence of the measured
flow.® In addition, the mass-number dependence of the
flow has been measured® by our considering apart from
Nb+Nb the systems Ca+Ca and Au+Au. In Table I

we display for all three systems both the experimental
and the calculated mean values for the flow as functions
of the beam energy per nucleon. When we compare
Ca+Ca with Nb+ Nb the measured flow roughly has a
mass-number dependence of A2/3, whereas when we
compare Nb+ Nb with Au+ Au, at 400 MeV per nu-

cleon it exhibits an approximate A4 173 dependence and an

TABLE 1. Observed (Ref. 5) and calculated flow in
(MeV/c)/nucleon for minimum-bias events as functions of
beam energy for various systems. The numbers in parentheses
are computed without a momentum-dependent force term.

Eo (MeV/nucleon) 400 650 800
Reaction
Ca+Ca 75 s
Nb+ Nb 130 140 135
Au+Au 159 161 150
Theory 105 (85) 112 (90) 107 (85)
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increasingly weaker dependence with increasing beam
energy. This is at variance with our mass-number-inde-
pendent-model results (last row of Table I). Hence we
conclude that our theory can account for only part of the
flow.

Next we discuss the performance of various other
models in comparison with the data of Ref. 5 as far as
results are available. Under certain conditions, in partic-
ular for an ideal-gas equation of state, nonviscous hydro-
dynamics leads to an A-independent and to an E{/?-
dependent flow as a scaling analysis'? reveals. This A in-
dependence is in clear contradiction to the data of Ref.
5. On the other hand the method of Ref. 12 shows that
under the same conditions viscous hydrodynamics yields
A and E( dependence of the flow compatible with those
of the measured one. This is based on the fact that once
it is possible to separate all scaling parameters in the ini-
tial conditions, in the equation of state, and in the hydro-
dynamical equations, the solutions of the latter and the
quantities constructed from them such as the dimension-
less flow f=f/po only depend on one single quantity,
namely the Reynolds number Ng. whose mass-number
and energy dependences can be calculated.

Regarding the numerical transport models which in-
clude mean-field effects>'3~!> we are not aware of sys-
tematic studies of the mass-number dependence of the
flow. Again, if we consult the scaling analysis'? the en-
ergy dependence of the flow in these calculations is E{?
just like in nonviscous hydrodynamics, which is in agree-
ment with the data in fixed high-multiplicity bins. It
would be interesting to extend the alternative low-energy
numerical transport approach of Vinet er al.'® to higher
energy for the study of the mass and energy dependences
of the flow.

The conservative cascade model (i.e., no mean field in-
cluded) yields a flow angle whose 4 and E( dependences
qualitatively agree with those of experiment’ but whose
size is too small. According to the authors of Ref. 9 the
flow angle arises in their cascade from the action of the
pressure built up inside the compressed central region on
the outer portions of the overlap zone. The flow angle is
reduced by viscosity forces or more generally by off-
equilibrium effects. No calculations for the flow are
presented but on the basis of relation (3) we expect simi-
lar features as for the flow angle, in particular a too
small size of the flow.

We conclude from the above considerations that at the
present stage there are two candidates qualitatively com-
patible with the data of Ref. 5. One is viscous hydro-
dynamics supplemented by an ideal-gas equation of
state. A further test of its applicability would be to
check experimentally for a large variety of systems and
incident energies whether the dimensionless flow
f.(A,Eo) remains constant for such combinations of A4
and E( for which the Reynolds number Ng.(A4,E() is
constant. So far we did not mention the size of the
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viscous hydrodynamic flow in comparison with the mea-
sured one simply because corresponding numerical hy-
drodynamic calculations are not available at present. To
obtain a reasonable size is, however, probably not
difficult since there is some freedom in the choice of the
viscosity coefficients (bulk and kinematical) which are
not well known. One could also turn things around and
use the size of the flow as a means to determine these
coeflicients.

The second candidate emerges from the following pic-
ture. In the early stage of the collision the dilute-gas
limit as described by the Boltzmann equation with two
separate mean force fields applies and a mass-number-
independent background flow develops. At a later,
high-temperature, stage the two fields are completely
destroyed and the cascade picture with only binary
nucleon-nucleon collisions dominates. In this stage the
mass-number-dependent portion of the flow is being built
up. It adds to the background flow, the sum yielding the
experimentally observed flow. A test of the presence of
the background flow would be to study experimentally
systems lighter than Ca+Ca. From cascade-model cal-
culations with the nucleons moving in their respective
potential wells there are hints that such a background
flow in fact exists.!”!'® This could further be checked
with the numerical transport models'*~'® employing an
attractive mean field only, parametrized such that it is
destroyed at high temperature. Related calculations
leading to a nonzero transverse average momentum and
hence to a nonzero flow have recently been reported. '°

The latter microscopic picture is closely related to
viscous hydrodynamics with an ideal-gas equation of
state but it is more general in the sense that not all of its
off-equilibrium features can be phrased in terms of
viscosity alone. In any case, if either one of the two can-
didates stands the tests against future experiments of the
types proposed above, the fundamental task of extracting
the compressional part of the nuclear-matter equation of
state will remain very difficult.
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