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It is shown that (0,2) Calabi-Yau manifolds as exact solutions at the string tree level can be obtained
from a class of (2,2) Calabi-Yau manifolds, which are constructed as blown-up Z, orbifolds.

PACS numbers: 11.17.+y

Since its proposal,' the status of (0,2) Calabi-Yau
manifolds has gone through different phases. Such man-
ifolds can be obtained from (2,2) Calabi-Yau manifolds
which have no (2727*)X terms (with K= 2) in the su-
perpotential. Here 27 and 27* are the massless-field
representations of the E¢ gauge group. In this case there
are flat directions in the effective potential with
(S;))=(5%)=0. Here S; and S} are the fields of 27; and
27} multiplets, respectively, which are singlets of the
SO(10) or SO(5) or some other subgroup of E¢. Thus,
for such models one is able to have a gauge group
GoCEs, i.e., spin and gauge connection are not identified
any more; however, the supersymmetry is still preserved.

In Ref. 1 constraints were given for which (2727*)%
terms (with K= 2) are absent in the superpotential to
any order in the o-model perturbation, i.e., to any order
in the a'/R? expansion. Here a' is the string tension and
R is the radius of the compactified space. Actually, it
seems to be a general feature? of smooth (2,2)
compactifications that to any order in a'/R? all the non-
renormalizable terms of the superpotential are absent.
This statement has been proven? for any symmetric orbi-
fold* with at least (0,2) world-sheet supersymmetry, and
is thus valid for smooth compactifications on (2,2)
blown-up orbifolds>® as well.

However, the world-sheet instantons’ (when they ex-
ist) generically induce® (2727*)X terms proportional to
exp(—R?/a'). Thus there are generically no flat direc-
tions with the gauge group GoCEs, i.e., (0,2) smooth
compactifications are generically not a vacuum solution
of the string theory.

The smooth (0,2) compactifications were resurrect-
ed®!'? by the study of constraints on (2,2) Calabi-Yau
compactifications for which the (2727*)X terms are not
induced to the lowest order (and possibly to all orders) in
the instanton contribution.

In this note I would like to present explicit construc-
tions of Calabi-Yau manifolds for which al/ the terms
(2727*)X are absent at the string tree level; i.c., by
studying blowing-up>¢ (2,2) Zy orbifolds.

The blown-up orbifolds are obtained>%!"!? from the
corresponding orbifolds by our giving nonzero vacuum
expectation values to the massless scalar fields— “mod-
uli”— associated with the orbifold singularities, i.e., the
so-called blowing-up modes, whose potential is flat.!'’'?

Scattering amplitudes in the repaired Calabi-Yau
background—and hence also parameters of the effective
Lagrangean—can be calculated by the insertion of suc-
cessively larger numbers of background blowing-up
modes into orbifold amplitudes. Although perturbative
in the blowing-up vacuum expectation values, the
method enables one to obtain explicit values>®'? for pa-
rameters of the blown-up orbifolds, thus giving exact re-
sults at the string tree level.

All such orbifolds possess the local conformal invari-
ance'#"'® in the right-moving sector, with vertices in
different “‘pictures” having different ghost numbers for
the bosonized right-moving superconformal ghost ¢.
Tree-level amplitudes involve collections of vertices such
that the total ghost number equals —2.'> The simplest
form of the vertex operator for such a space-time fer-
mion is the —  picture, while that for a space-time bo-
son is the —1 picture. The picture-changing formalism
enables one to obtain vertices in other pictures. For ex-
ample, the vertex for a space-time boson in the O picture
is obtained in the following way'*:

V(z)o= lim exp(@)Trw)V(z)—\. 1)

Here V(z) —, is the corresponding vertex operator in the
—1 picture and

Te=08, X'y*" + 3, X* y'+9,Xx+o" (2)

is the world-sheet supersymmetry generator'>—the
stress-energy tensor for orbifolds. X and y are the string
bosonic and fermionic coordinates, respectively; the in-
dices (i,i*)=(1,2,3) and u =(1,2,3,4) denote the three
complex internal and the four space-time dimensions, re-
spectively. The right-moving N =2 superalgebra of
(2,2) models incorporates a U(1), ; current algebra, gen-
erated by J,;=—+38H,;. H,,(z) is a free right-
moving and left-moving scalar field, respectively. For or-
bifolds, world-sheet symmetry is enlarged to [U(1)
®U(1)®U(1)],,. Thus, instead of two conserved
charges H, ;=Y 7—,(H;), there are six separately con-
served charges, (H;),;, i=1,2,3. The H, charges are
fixed for vertices for massless chiral multiplets. For ex-
ample, one finds that H,=+1 (—1) for vertices in the
—1 picture and H, = — L (+ %) for vertices in the — +
picture with the space-time chiral multiplet having posi-
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tive (negative) chirality.

The separate (H;), charges are the phases of the
discrete rotation @ acting on the three compactified coor-
dinates. For example, for Z; orbifolds 8 =(w,w,w) in its
diagonal form with ®=exp(2zi/3). This in following
determines (H;), charges of the singly twisted sector
(gVtobe (5, 5,5)and (§ —+,+ — %, — 5)inthe
—1 and — % pictures, respectively. In Table I* I give
(H;), charges of the singly twisted sector for all the Zy
orbifolds with space-time supersymmetry. (H;), charges
completely specify the right-moving part of the vertex
operators in the —1 and — ¥ pictures. For example, for
Z 3 the right-moving part of ¥ —; for the singly twisted
sector has the form

exp(— o)1, expli(H;),/31oexplik, X*).

Here o denotes the twist field creating the singly twisted
vacuum.

On the other hand, the parts of the vertices which car-
ry the information of the left-moving sector should be
constructed explicitly, because of the lack of the local su-
perconformal invariance in the left-moving sector; i.e.,
the picture-changing formalism does not apply. Howev-
er, the (2,2) world-sheet supersymmetry enables one to
find a general prescription for the vertex operators of the
“moduli,” i.e., the “blowing-up” modes corresponding to
the blowing up of the fixed points (moduli of the twisted
sectors) and the massless modes corresponding to the de-
formation of the six torus, 7% (moduli of the untwisted
sector). The moduli transforming as (1,1) (b) and (1,2)
(b*) forms appear along with 27 and 27*, respective-
ly 17

It turns out® that the left-moving sector of these vertex
operators is the vertex operator in the O picture. For ex-
ample, the blowing-up mode b of the singly twisted sec-
tor of Z3 orbifold which sits at 27 fixed points transforms
as (1,1) form and has a vertex operator of the type

lim Y 9,.X*"e THHD (% )l—_[ei(H’)’/3 (z*).
J

w¥—z* %

TABLE 1. (H;), charges of the singly twisted sector in the
— 1 picture for Zy orbifolds with space-time supersymmetry.
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One can also construct the left-moving sector for the
vertex operator of 27 and 27* of Es. For the parts of 27
(27*) transforming as 16 (16*) of SO(10), the vertex
operator corresponding to the left-moving sector can be
represented as vertex operators in the — 3 picture with
H;=—% (H;=+ ). It can be obtained by use of (1);
however, one suppresses the ghost charge ¢, the space-
time indices u, w,z— w*,z* and (H;),— (H;);. For
example, 16 of the twisted sector of the Z; has
(H)j=—%,i=1273.

The calculation of parameters of the effective
Lagrangean of a particular theory reduces to the study
of the corresponding amplitude of the massless states
emitted from the string propagating in this particular
background. When one is calculating amplitudes which
probe the terms of the superpotential, it is most con-
venient to calculate>® the corresponding Yukawa-type
n-point function.

A =<V—1/2V—1/2V—1V0 s V()), (3)

with V(-2 —1,0) corresponding to vertices in different
pictures which represent emission of massless fields from
the positive chirality supermultiplets. One sees from (1)
and (2) that only terms of ¥V, with H, =0 contribute to
(3).'"12 Namely, for V(-1/2).(-1), H-=— +,1, respec-
tively, and thus only the terms of ¥V, proportional to
dX'y*" survive in such amplitudes in order to conserve
the total H, charge.

Such an amplitude should also be invariant under the
automorphisms, i.e., the point group of discrete rotations
0™, of the lattice. Thus, if one can show that the ampli-
tude (4) which corresponds to (2727*)X with arbitrary
insertion of moduli is not invariant under a discrete rota-
tion 6, such an amplitude is identically zero at the string
tree level.

In order to show this, I shall analyze first the (H;),,
charges of 27* as well as b*, i.e.,, moduli which trans-
form as (one- and two-) forms. In Ref. 6 it has been
shown that 27 (b*) appears in the untwisted sector of

the theory if ;= —1, i.e., the discrete rotation 6 rotates
the i§" complex coordinate by 180°. This implies
- % k) 16*’
(Hio)/ =
0’ *’
(4)
(Hi),=1, —1 picture.

Here 16* refers to the part of 27* that transforms as
16* of SO(10).

On the other hand,® 27* (b*) appear only in such m-
twisted sectors for which ,-’:;1= +1, i.e., the i&" direction

is left fixed by 6™. Then the charges are the following:
+7, 16%,
Hidi=1o, s,

)r =0,

(5)

(H, — 1 picture.
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By inspecting Table I, one sees that the igth direction
and ioth direction are the same for all but the Z. orbi-
fold. Thus, for such (blown-up) orbifolds, one can now
examine properties of the corresponding amplitude with
respect to the (H;);, charge and the X;, world-sheet
coordinate only.'® It turns out that with use of Egs. (4)
and (5) and a separate conservation of (H;);, charges,
the amplitude (3) is
A=((2727*)Xp p*M) (9, X?9

0°z

X009, X%, (6)

with a =c¢ =b+2d — 1 where d and b denote the number
of 27* and b™* from the untwisted sector, respectively. c¢
depends® on the sum of (H;,);,, charges for the 27’s and
b’s and is thus specific to each particular Zy model.!°

A=0, because it is not invariant under 6;. Namely,
for the models with 6;,=—1, (6) changes sign under 6;,,
while for the models with 6;;%= —1, d=b=0, and (6)
again picks up a phase under the action of 6;,.

Thus at the string tree level, the above (blown-up)
(2,2) orbifolds have flat directions with GoC E¢.?° This
is only the feature of the class-Zy blown-up orbifolds,
for which the appearance of 27* (b*) from the untwist-
ed and twisted sectors is tied to a particular value of the
discrete rotation acting on only one particular direction.
This symmetry, however, breaks already for Z. (blown-
up) orbifolds and presumably for other (blown-up) orbi-
fold constructions, as well.
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