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Davey-Stewartson I System: A Quantum (2+1)-Dimensional Integrable System
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The Davey-Stewartson I equation is a nonlinear evolution equation originally derived in the context of
multidimensional, weakly nonlinear water waves. It has recently been exactly solved by the classical
inverse-scattering method for localized potentials, and also possesses nonlocal soliton solutions. We have
calculated Poisson-bracket relations for elements of the scattering matrix, as well as corresponding quan-
tum commutation relations. Commutation relations are found that are a (2+1)-dimensional generaliza-
tion of a Yang-Baxter algebra.
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Exactly solvable systems have played a significant role
in our understanding of nonperturbative phenomena in

physics. Many quantum field theories in 1+1 dimensions
have been found to be integrable, allowing the calcula-
tion of exact 5 matrices and physical spectra. The Ising
model and other exactly solvable models of two-
dimensional statistical mechanics have helped to provide
a basis for modern scaling theory. Moreover, some of
the more interesting mathematics occurring in quantum
string theories, including loop spaces and Kac-Moody-
Virasoro algebras, also appears in integrable systems.

Associated with every known integrable quantum sys-
tem in two dimensions (or equivalently one space+one
time dimension) is a solution of the so-called Yang-
Baxter (YB) equations, ' and the existence of a corre-
sponding "Yang-Baxter algebra. " The YB equations
arise in various contexts, and have come to be regarded
as the criterion for exact quantum integrability.

It is certainly of interest to extend the study of quan-
tum integrability to more dimensions. Progress was
made in this direction when Zamolodchikov considered
the scattering of "straight strings" in a plane, and wrote
down a 3D generalization of the YB equations, called the
tetrahedron equations, as well as a conjectured solution.
Baxter was able to verify this solution and to calculate
exactly the free energy of an equivalent classical statisti-

ca1 mechanical model. However, the physical interpre-
tation of the Zamolodchikov-Baxter solution is some-
what problematic, and the tetrahedron equations are so
complex that little progress has been made in finding
other solutions.

An alternative approach to the search for new quan-
turn integrable systems in more dimensions is to exploit
our knowledge of existing integrable classical systems.
There now exist a number of nonlinear evolution equa-
tions in 2+1 dimensions t(2+1)Dl which are solvable
by the classical inverse-scattering transform (CIST).
According to our experience in (1+1)D, each of these
classical systems should have a corresponding quantum
analog which is exactly integrable. In this Letter we
consider the quantum analog of such a classical system,
known as Davey-Stewartson.

The Davey-Stewartson (DS) equation is a nonlinear
partial differential equation in (2+1)D, originally for-
mulated as a model to describe the evolution of multidi-
mensional, weakly nonlinear water waves. Depending on
the choice of the parameters in the equation, it admits
two types of soliton solutions, localized lumplike solitons
and nonlocalized straight-line-like solitons. Classically,
the asymptotic scattering of the lump solitons is trivial,
but the line solitons experience a nontrivial phase shift.
For our purposes DS is an obvious choice because it is
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one of the simplest of the known more-dimensional in-

tegrable classical systems. It reduces in the (1+1)D lim-

it to the well-known nonlinear Schrodinger (NLS) sys-

tem, whose quantum version, the 6-function gas model,
or quantum NLS model, is one of the best understood
of the quantum integrable systems.

We have calculated various classical Poisson-bracket
relations between elements of the scattering matrix of
the underlying linear problem for DS I, enabling us to
identify explicitly the classical action-angle variables.
We have also calculated certain corresponding quantum
commutation relations and find them to be a (2+1)D
generalization of a Yang-Baxter algebra.

We first discuss the classical case. We will be con-
cerned with the hyperbolic version of the DS equation, a
nonlinear partial differential equation for a complex-
valued function q =q(x, y, t),
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q). This time-evolution equation for q can be generated
by a nonlocal Hamiltonian (which will depend on the
choice made for Ai and A2) via the Hamiltonian formu-
lation of classical mechanics, where q and r are the con-
jugate variables.

As is the case for all nonlinear partial diff'erential
equations solvable by the CIST, (1) appears as the com-
patibility condition for two underlying linear equations,
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and y=itt(x, y, t) is a 2X2 solution matrix.

The first of these equations, (3a), can be viewed sim-

ply as a linear scattering problem in which q plays the
role of the potential. (3a), for suitable choice of bound-
ary conditions, can be rewritten as a system of linear in-

tegral solutions,

P„(g, , ~) =~,,' p[2 (,+~)J,g, l+„~ dg'G, ', (g —g', )[Q(g')P(g', ,~)];,,

where g~ =x+y and g2 =x —y with g denoting the coordinate pair (g~, g2), x=rcR+ixt is a complex parameter, A, is a
real parameter, the indices i,j can each take on values 1 or 2 (where we use the notation 1=—2 and 2—= 1), and all in-
tegrations are over infinite space. Also, for convenience of notation we use

y;, (g, x, k, t) =y;, (&, x,x, t) exp[i(rcR+z)'J, t],

and we shall suppress the argument, t.
We choose the Green's function

G ~ (g, x) =G; (g,i ~ ) =„exp [2i (rc ~ + l )J;g; ] [0(g ~
+ gq) 0( —J;l ) —8( —(i —g2) 8(J;1)], (7)

with x~ =tc~ +ixj, x~ =x-t+ J JJ(xR —xt)~, and x~ =xt. G (g, x) is obtained by taking the appropriate limit of the
Green's function of the more general D-bar problem. '

We also will find it useful to define a solution, g, of an adjoint linear problem,

f
pi (g, xk, ,X') =6k exp[ —2i (xg~j+ X')Jk&k] +'d&' g gt (&', x0, 1')Qtk(&')Gt, (j' &, xk, )

1=1

Of fundamental interest in both the classical and the quantum problem is the "scattering matrix" or the "scattering
data" of (6), which we define to be

T;, (x,X,k') =J J d&exp[ 2i(x;, +k')J;j;][Q(&—)y(&, k)x];, .

For certain choices of the parameters K, X, and k', T can be shown to have a very simple time dependence, and is thus
used in the CIST to "reconstruct" the potential q(x, y, t) at arbitrary times, for appropriately given initial conditions.
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We can calculate Poisson-bracket relations between elements of T, where we define canonical Poisson brackets

~f ~g ~f
~q(g) ar(g) ~r(g) aq(g)

We find, by use of the linear integral equations, (6) and (8), that

r

[T.tj(x, z, z'), T„,(r,p, p')] = g „Jdye. .(g, x.tl, z')ijr p(&, x,X)g„.(g, r-.,,p')—lire(&,r, p).
a=1

The solution ljr and its adjoint g satisfy

(io)

g'k (( xkj k ) l/fkj (( r p ) 0.
k=1

This identity can be used to rewrite the integrand appearing in (11) as

[T.p(x, ~,&'), T;(r,p, p ')

2

g „d4 J d4 0(J (& 4'))(. (4 4; &.p~')ltr p(4', 4; x~)(r (& 4; r b p')P'ab(4a 4; r, p)
a=l

g
—=+ oo
a

+ g J,
&

d(, g„(g,x,tl, A, ')ljr, b(g, z, p)
a=] J—(-=oo

a a

& dg,-g„,-(g', ,rpb') ti&r(-g', x, X) J &, (i2)

In order to evaluate (12) it is necessary to find asymptotic expressions for ljr and g. However, these can be found
easily by our using (6) and (8) and noting that it is possible to write G in the two alternative forms (7b) or (7c).
Then
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Inserting (13) and (14) into (12), we arrive at an expression for [T,p(x, k, k'), Trb(r, p, p') j purely in terms of T's.
Instead of writing down a lengthy expression, which contains terms up to quartic in T, we instead give results in two

interesting limiting cases. First, letting X =X'=p =p'=0 and T(rc,0,0) —= T (x.), we recover the scattering data of the
hyperbolic limit of the D-bar problem, and, making use of an identity easily derived from (6), find Poisson-bracket rela-
tions

[Tl l (x),Tl l (r)] = [Tl2(x), Tl2(r)] = [T2l (x), T2l (r)] =0,
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as well as a number of other similar relations.
Alternatively, we can take the limit &et +~, xR +~, T(x,k, k') T+(0,0'), where e=xR+k, 0'=xR+X' are

kept finite. In this way, we recover the scattering data associated with a solution to (3a),

pij+((, 0) —= ljrj((, 0)exp[ —2ieJ;gj+ie Jjt],
analytic in the upper-half 0 plane, which is used in the Riemann-Hilbert approach to CIST. We find
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where we have defined

s+(e, e') =2~Jr(e e')+ T'(e,—e')
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Similarly, the limit xl —,Kz +~ gives us the
scattering data associated with a solution analytic in the
lower-half plane.

From the Poisson-bracket relations for the elements of
T, given by (15), one can see that Ttz(tc) and T2t (tc~2)
are related to the original conjugate variables, q and r,
by a canonical transformation. Furthermore, T» (tc)
and T2& (K ) are action variables of the theory, and it can
be shown by use of the appropriate limit of the D-bar
formalism that they can both be expanded in powers of
I/rett, generating two infinite sets of constants of the
motion, including as members the total momentum and

energy Hamiltonian of the system. Thus the nonlinear
evolution equation, (1) and (2), is exactly integrable,
with proper boundary conditions (D bar).

The results, (16), for the Riemann-Hilbert formula-
tion of the inverse problem have a very different form
and reduce in the (1+1)D limit to well-known classical
relations of the YB type. This leads us to search for
analogous quantum commutation relations. We have
been able, in fact, to calculate such relations for an
operator version of DS I with ordering taken to be as it
appears in (1)-(3). (Note that we do not treat the
normal-ordered case. ) If we replace the canonical
Poisson-bracket relations for q and r by their correspond-
ing canonical equal-time commutation relations, we can
modify our calculation slightly, now taking care to
preserve correct operator ordering throughout, and
derive commutation relations for elements of S+ (or
similarly for S ). We find generalized Yang-Baxter
commutation relations for S+, given by (16), with
[S+,S+J replaced by [S+,S+] on the left-hand side of
the equation.

In the quantum case, as well as the classical case, it is
not obvious how to identify the generators of conserved
quantities in terms of T and T . However, T and
T are related to T via integral equations, and the ar-
gument used in the D-bar approach to show that T ~ ~ and

T22 are time independent and can be expanded in powers
of I/tetr can also be made for the operator version of the
problem.

Quantum NLS is a (1+1)D nonrelativistic theory for
complex scalar bosons with a four-field interaction, or
equivalently, rewritten in first-quantized form, it de-
scribes a system of bosons interacting via a two-body 6-

function potential. The exact energy spectrum can be
calculated by use of Bethe's Ansatz, and this fact is inti-
mately connected to the existence of a corresponding YB
algebra. In a sense, quantum NLS serves as a para-
digm for other integrable quantum field theories in

(1+1)D, such as the Thirring model. We believe that
the same will be true for its (2+1)D generalization,
Davey-Stewartson, and that the generalized YB relations
will be useful in developing a generalization of Bethe's
Ansatz to extract the physical energy spectrum of such
models, and also exact S matrices.
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