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Fractional Quantum Hall Effect at Half-Filled Landau Level
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We have studied the excitation spectrum for a one-half filled Landau level in a two-layer system of in-

teracting electrons, by finite-size calculations in a periodic rectangular geometry. The interlayer interac-
tion is found to be important for obtaining a unique ground state and the required gap structure in the
spectrum. On the basis of these observations, we predict that the fractional quantum Hall eftect might
be found at this filling in such a layered system.
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The discovery of the fractional quantum Hall eftect
(FQHE) in two-dimensional electron systems subjected
to a strong perpendicular magnetic field' indicated that
the efrect occurs exclusively at the Landau-level filling
factors with odd denominators. The theoretical studies
of the eA'ect in terms of electrons condensed into an in-
compressible quantum Quid state have been quite suc-
cessful in explaining several interesting aspects of this
phenomenon. These developments have recently taken
a new turn by the discovery of FQHE in an even

denominator filling factor —', in the second Landau lev-

el. The simplest filling factor with even denominator,
v= 2, still remains elusive, however. Here v=2zlop is

the Landau-level filling factor with lo =—(hc/eB) 'i the
magnetic length and p the particle density. Electron
pairing for such a state was first suggested by Halperin.
For v = —,', a Laughlin state describes a system of bosons
(and interestingly, also describes the ground state of the
Heisenberg antiferromagnet in two dimensions ). With
use of the method of exact diagonalization for finite sys-
tems in a periodic rectangular geometry, ' a cusp at
v= 2 was in fact obtained by Yoshioka for a system of
particles obeying Bose statistics. In a recent study of
this filling fraction, Fano, Ortolani, and Tosatti have re-
ported finite —electron-system calculations in a spherical
geometry. ' They obtained the excitation spectrum,
which showed very erratic behavior with no clear trend
seen. As we shall see below, this is typical for a single-
layer system.

In this Letter, we present the results for the collective
excitations at v=

2 for a layered electron system, using
the method of exact diagonalization of finite electron
systems in a periodic rectangular geometry. '' ' Multi-
layer electron systems have been studied earlier experi-
mentally ' and theoretically, ' ' as an anisotropic model

for an electron gas. In the present work, we have con-
sidered the model by Visscher and Falicov' where two

layers with equal densities of electrons are embedded in

an infinite dielectric. We also consider the 6-function-
localized electron density in each plane. The electrons
move freely in each plane and we consider only Cou-
lombic interaction for electrons in different planes. Tun-
neling of electrons between two planes is not allowed.
Furthermore, the electrons are considered to be in their
lowest subband. Recently, experimental systems which

can be described reasonably well by the above model

have been obtained by diAerent groups in GaAs hetero-
structures. ' The Coulomb potential energy between
two electrons situated at planes i and j is given as' '

(e'/e) l(r —r') '+ (i —j) 'c'1

where r is the two-vector (x,y), e is the background
dielectric constant, and c is the interlayer separation.
The Fourier transform of the above expression with

respect to r —r' is

p'(k't j ) = (2tre 2/&k )
—k ~i

—i I
v

where k is a two-dimensional in-plane wave vector. In
the numerical calculations that follow, we have used the
dimensionless parameter c, =c/lo. For v= —,', the mag-
netic field is usually in the range 8=10-20 T and in or-
der to obtain any appreciable eAects from the exponen-
tial factor in v(k;i, j) in the range of klo accessible in our
numerical calculations, we have chosen c =2lo. Results
for c which are slightly lower than this value are qualita-
tively similar and are not presented. The eA'ect of the in-
terlayer interaction is to lift the twofold degeneracy
which would otherwise be present. The interlayer cou-
pling is also found to remove the additional degeneracies
generally present in a single-layer system at this filling.
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The resulting spectrum, as shown below, is strikingly
similar to the collective excitations expected for the in-
compressible fluid state at v =

3 . Our present study
therefore indicates the possibility that FQHE at v= —,

'

might be observable experimentally in a multilayer sys-
tem.

The evaluation of the collective excitations for a finite
electron system in a periodic rectangular geometry has
been made by a method similar to the one described ear-
lier by Haldane. '' In the present case, we have general-
ized the method of Ref. 11 for the two-layer system. Ac-
cordingly, we consider a rectangular cell containing two
layers of equal numbers of electrons N, . We ignore, for
simplicity, the Landau-level mixing, and impose periodic
boundary conditions such that the cell contains an in-
teger number N, of flux quanta. We also consider the
electrons to be in the spin-polarized state, and all the
electrons to be in the lowest Landau level. The filling
fraction is therefore —,

'
in both layers. In the earlier

analysis of Haldane for a single-layer system, the Hamil-
tonian conserved the total momentum k, which has only
a discrete set of values depending on N, and the filling
fraction. The basis states were chosen to be the eigen-
states of the momentum operator. ' ' In the case of a
two-layer system, the Hamiltonian conserves the total
momentum as well as the number of electrons in each
layer. Therefore, it can be diagonalized for the set of
states

~ k|,L|)
~
k —k|,L2), where

~
k;;I-;) is a momentum

03-

02-
ll

eigenstate for N, electrons in a single layer i belonging
to the eigenvalue k;. Here, I; =

~ jl, . . . , j~ ) labels a
Slater determinant of Landau orbitals with momentum
k;. The complexity of the computational method has re-
stricted us presently to a system of four electrons per lay-
er (eight-electron system). The computation of the ten-
electron system (five electrons per layer) excitation spec-
trum is very time consuming and is currently under in-
vestigation.

Let us first discuss the excitation spectrum v =
2 for a

single-layer system. As shown in Fig. 1, the low-lying
excitations for a four-electron system and various values
of aspect ratio X, X =1 (square) and ) =1.25 (rectangu-
lar), do not show the well-behaved features generally ob-
served for the filling factors with odd denominators. '

Although in the single-layer case we could calculate the
spectrum for very large systems, the situation does not
change qualitatively with the larger systems. As noted
earlier by Haldane'' who studied up to ten-electron sys-
tems, the ground state is not found generally at k=0,
but at general k points which move and change discon-
tinuously as the system geometry is varied away from the
square geometry. Furthermore, no clear gap structure is
apparent in the spectrum. Similar results were also ob-
tained recently by Fano, Ortolani, and Tosatti for six-
to twelve-electron systems in a spherical geometry.

The situation changes drastically, however, in the case
of the two-layer system. The eff'ect of anisotropy in the
system helps, removing all the unwanted features de-
scribed above from the excitation spectrum. The first
important result to note is that the ground state for the
layered system is obtained uniquely at k =0 and it
remains so even when we change the system geometry by
varying the aspect ratio k. In Figs. 2 and 3, we have
presented the excitation spectrum for the eight-electron
system (four electrons per layer) for the square (k =1)
and rectangular (X =1.25) geometries, respectively. The
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FIG. 1. Low-lying excitation energies as a function of klo
for a single layer of electrons at v= —,', presented for four-
electron system in (a) square (k =1) and (P) rectangular
(X =1.25) geometry.

FIG. 2. Excitation spectrum of eight-electron system in a
two-layer geometry at v= —,

' for dimensionless layer separation
parameter c, =2.0 and aspect ratio k =1.
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FIG. 3. Same as in Fig. 2, but for the aspect ratio X =1.25
(rectangular cell).

infinitely separated quasiparticle-quasihole pair. If we
identify the lowest-lying excitations as the quasiexcitons
(bound state of a quasiparticle and quasihole), Eg is the
asymptotic value of the lowest-lying collective dispersion
E(k) obtained numerically. As discussed above, the col-
lective mode obtained in the present case has all the
necessary characteristics of an incompressible fluid state
first proposed by Laughlin to explain FQHE. In that
case, we can expect that the quasiparticles and quasi-
holes will have fractional charge of e* = ~ e/m, with
m =2 in the present case. As noted by Kallin and
Halperin, ' for large values of klo, the quasiexcitons
comprise a quasiparticle and quasihole separated by a
large distance,

~
Ar

~

=kin =klom, where lo is the
effective magnetic length for a particle of charge e*.
For large values of k, we may then have

+2 2

E(k) =Eg — =El-
m "kI.' '

ground-state energy is slightly lo~er for the rectangular
geometry; however, the energy difference between the
two geometries is very small (=0.005).

The most important result of the present work, howev-

er, is a gap structure in the spectrum, as well as the
characteristic minimum at a finite klo, similar to the
magnetoroton minimum of Girvin, MacDonald, and
Platzman. ' For a square geometry, a few energy levels
lie very close, but separated from the continuum by a
large gap (Fig. 2). These close-lying energy states can
be further separated by moving away from the square
geometry, as demonstrated in our numerical results in

Fig. 3. This is made possible by the fact that the square
geometry, as noted by Maksym, ' has higher degenera-
cies as compared with the rectangular geometry. The
lowest two excitation energies, which are now clearly
separated from the higher-energy states for most values
of klo, could presumably be interpreted as the two eigen-
modes in a system of two charge layers. They arise be-
cause of the electron correlations in the two layers. One
can, in fact assign the parameters k&(n) =2rrn/NLc to
the two modes, where n =0, . . . , N —1, NL being the
number of layers. For a superlattice (NL ~), k~(n)
would be the wave vector perpendicular to the layer. In
that case, one would see a band of low-lying collective

Iexcitation spectrum. Such a spectrum for v=
3 has

been calculated recently in the single-mode approxima-
tion. ' The lowest-energy excitations in Fig. 3, there-
fore, exhibit a feature which is quite naturally expected
in a two-layer system. As has also been demonstrated in
our numerical results, the crucial features in the two-
layer system do not change qualitatively with the diff'er-

ent geometries considered in the present work, and are
very similar to the incompressible fluid state studied by
various authors for v= 3 ~

Finally, from the excitation spectrum obtained as
above, we can also estimate the energy gap E~ for an

from which the gap is estimated. With use of the nu-
merical results for the lowest excitation energy obtained
for the maximum value of klo available in our present
numerical work, the gap is evaluated to be =0.209.
The energy gap obtained earlier in this manner ' for
finite electron systems in a periodic rectangular geometry
provided quite reliable results at v=

3 ~ It is interesting
to note that the energy gap estimated for this filling is
much higher than the corresponding gap for —,

'
filling,

Eg=0.1, as estimated by various authors. The gap
will be reduced somewhat if we consider the finite-
thickness corrections in a more realistic situation. ' '

However, considering the magnitude of the gap, it is ex-
pected to be still large enough to be measured experi-
rnentally.

In conclusion, we have presented the excitation spec-
trum for —,

'
filling of the lowest Landau level in a system

of two layers of interacting electrons subjected to a
strong perpendicular magnetic field. While in the sin-
gle-layer case, the ground state is obtained at a finite
value of k, which is strongly geometry dependent, intro-
duction of another layer of interacting electrons helps to
reorganize the excitation energies, particularly for the
k=0 state. The spectrum has several features charac-
teristic of an incompressible fluid state. The observation
of a unique ground state and the appearance of a gap
structure in the spectrum raises the interesting possibility
that FQHE might be observed experimentally in such a
layered system. The energy gap could also be estimated
from the activation energies as measured earlier for
odd-denominator filling fractions. From the theoretical
point of view, the present small-system calculations pro-
vide only a qualitative understanding of the ground state
and excited states for v= &, but larger system results
are required to confirm our conclusions on a quantitative
level. Many-body, Laughlin-type approaches are also to
be developed. Finally, experimental observation of the
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properties of this filling factor described in the present
work would not only provide a stimulus for obtaining an
interesting array of even-denominator filling fractions, as
seen for the odd-denominator filling fractions, it would
also have a direct impact on the standard methods
currently in use to explain FQHE.
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