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Nonlinear Interaction between a Warm Electron Beam and a Single Wave
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We have experimentally observed the growth and saturation of a single wave on a warm-beam, slow-
wave-structure system. When the wave growth is suificiently weak, the time-averaged beam distribu-
tion function develops a localized plateau. When the growth is stronger, the entire distribution function
can become distorted. The electric field at saturation scales as the square of the linear growth rate of the

wave.

PACS numbers: 52.35.Qz, 52.35.Ra

In the linear theory of electron plasma waves propaga-
ting in warm collisionless plasmas, it is well known'?
that if there is a negative slope in the electron velocity
distribution function at the phase velocity of the wave,
the wave exhibits Landau damping. If the slope is posi-
tive, the wave exhibits Landau growth. However, when
the plasma-wave oscillations are nonlinear, only the
damping of a single launched wave is well understood
theoretically? and experimentally.* The growth of a sin-
gle launched wave to nonlinear saturation is not well un-
derstood in the warm-plasma case.

The canonical experimental situation in which wave
growth is studied is the case of a low-density warm elec-
tron beam streaming through a background plasma.
Normally, an entire spectrum of modes becomes unsta-
ble and grows. The standard theoretical description in
this case is quasilinear theory.® The case of the growth
of a single wave on a warm-beam-plasma system is rath-
er difficult to realize experimentally. Nevertheless, an
experiment to address this basic problem is of interest.
There have been a number of relevant numerical and
theoretical works. In 1971 the problem was studied nu-
merically by Fried et al.® The related problem of
single-wave saturation in a low-density, cold-beam-plas-
ma system was studied by Drummond ez al., by O’Neil,
Winfrey, and Malmberg, and by Onischenko et al.’
These authors predicted on the basis of a trapping model
that in the temporally growing case, the saturation elec-
tric field, E s, would scale with the linear growth rate,
w;, as Equxwf. Ina spatially growing system this corre-
sponds to Eg<ck?. We will call this scaling “trapping
scaling.” In addition, the closely related case of the sat-
uration of a marginally unstable wave in the low-density,
warm-beam case was studied theoretically by Simon and
Rosenbluth?®; this case has been studied numerically in a
recent work by Denavit.’

A useful feature of the weak-warm-beam-plasma in-
teraction is that if the beam is of sufficiently low density,
the background plasma behaves as a linear dielectric and
acts only to support the wave. We exploit this feature in
our experiment by replacing the plasma with a helical
slow-wave structure.'® In the weak-beam limit, the

equations that describe the interaction of the warm beam
and the slow-wave structure are formally identical'! to
those that describe the warm-beam-plasma interaction.
The low inherent noise level of the slow-wave structure
enables us to launch a single wave at a level which is not
only well below saturation, but also well above the back-
ground noise level. With this device we have experimen-
tally observed the growth and saturation of a single wave
in a warm-beam, slow-wave-structure system. If the
growth rate is sufficiently weak, saturation occurs when a
localized plateau is formed in the beam distribution
function. If the growth rate is sufficiently strong, the en-
tire beam distribution function can be distorted at satu-
ration. We have also found that the wave electric field at
saturation, Eg,, scales with the spatial linear growth
rate, k;, as Egyxkf?, where a=1.94 =0.20, in excellent
agreement with the a =2 prediction of trapping scaling.

The interaction between the beam electrons and the
growing wave is characterized by the ratio of the particle
autocorrelation length to the spatial growth length,
np =kjo/k*Av,. We are interested in the case in which
this ratio is less than unity. In the opposite limit, n, > 1,
the beam is considered to be cold and the Landau formu-
la does not apply. If 7,>1 and if beam density is
sufficiently low, then the interaction is well described by
the small-cold-beam-plasma theory.” Here w and k are
the angular frequency and wave number of the mode.
Av, represents the width of the distribution function; in
our experiment we define Av, =vys—vys, where v7s and
vys are the velocities at which the unperturbed-beam
parallel-energy distribution function has decreased down
its positive slope to 75% and 25% of its maximum value,
respectively.

The experimental apparatus'? consists of an electron
beam which is confined by a strong magnetic field
(B, =440 G) and directed along the axis of a helical
slow-wave structure. The electron beam enters the
slow-wave structure with an axial velocity spread. This
spread in axial velocities is produced'? by our passing a
cold electron beam through three parallel, closely spaced,
wire mesh grids. All three grids can be biased; the mid-
dle grid is normally biased at a high positive potential,
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FIG. 1. Corrected linear growth rate vs beam current.
Cathode voltage, Vo=65 V; frequency, f=65 MHz; Vs=2
kV. Bias on the entrance grid of the spreader, Vs, =0; bias on
the exit grid of the spreader, Vs3=0.

Vs. Because of the strong electric fields near the grid
wires, the electrons nonadiabatically scatter some of
their axial kinetic energy into perpendicular kinetic ener-
gy. Thus, by adjusting Vs we can control the axial ve-
locity spread of the beam. An important property of this
method of producing an axial velocity spread is that the
shape of the electron velocity distribution is independent
of the beam current over the range of beam currents
used in the experiment (5-800 pA). The helix is rigidly
held together by a support structure and is enclosed by a
glass vacuum tube. Outside of the glass tube are axially
movable electrostatic probes which are used to transmit
and receive radio-frequency waves. The helix and probe
assembly are enclosed by an axially slotted 3.8-cm-ra-
dius cylinder which defines the rf ground and acts as a
waveguide beyond cutoff for the frequencies used in the
experiment. This ensures that for these frequencies, the
only traveling waves that can exist in the tube propagate
on the helix. Most of the beam is collected immediately
after passing through the helix. A small fraction of the
beam passes through a hole in the collecting electrode,
then through a discriminator tube, and is then separately
collected. By biasing the discriminator tube and measur-
ing the current that gets through it, we determine'* the
time-averaged beam velocity distribution function.

The linear growth of a single wave on a warm beam is
described theoretically by the Landau formula. In Fig.
1, we plot the corrected linear growth rate, k;—kjo
versus the beam density. Here k; is the measured linear
growth rate and k;o (k;o <0) is the measured damping
rate of the wave in the absence of the beam. This wave
damping is due to dissipation in the helix support struc-
ture. The beam density was varied by the variation of
the beam current with the beam voltage kept fixed. The
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FIG. 2. Wave power vs axial distance. Beam voltage,
Vo=120 V; beam current, /o=440 puA; Vs=3 kV, Vs =115
V, Vs3=0; f=50.0 MHz; n, =0.098.

points are the measured values and the line is given'' by

ki — ko= e "R (3/30)

i i 5
m

where n is the density of electrons per unit length, —e
and m are the electron charge and mass, R is essential-
ly'% the impedance of the helix and 8f/dv is the mea-
sured slope of the unperturbed distribution function eval-
uated at the wave phase velocity. The agreement is seen
to be quite good.

In Fig. 2 we exhibit the growth and nonlinear satura-
tion of the single wave. Here we plot the logarithm of
the wave power as a function of axial distance, z. The
wave power is seen to grow exponentially nearly 15 dB
and then saturate at around z =160 cm. The weak slow
oscillations visible in the plot are due to a beat between
the forward wave on the helix and a passive mode on the
beam.

If the growth rate is weak in the sense that n,<1, a
localized plateau forms in the beam distribution func-
tion. In Fig. 3(a) we show the time-averaged parallel-
energy distribution function of the beam with no wave
launched (dotted line) and with a launched single wave
which has grown to saturation (solid line). As the wave
grows and saturates, the distribution function is seen to
develop a localized plateau. The arrow marks the paral-
lel energy corresponding to the phase velocity of the
wave. If we increase n,, the region in parallel energy
over which the distribution function becomes distorted
increases. If 7, is sufficiently large to cause the distor-
tion to involve the high-energy edge of the distribution,
the entire beam distribution becomes distorted at satura-
tion. The value of 7, at which this occurs can be made
smaller if the wave is launched at a phase velocity closer
to the edge of the beam distribution. In Fig. 3(b) we
show an example of such a distortion of the beam.

We next present our results on the scaling of the satu-
ration electric field with the growth rate. The basic idea
of the trapping scaling can be understood from the fol-
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FIG. 3. (a) Time-averaged beam parallel-energy distribu-
tion function at saturation (solid line) and with no launched
wave (dotted lines). Vo=65 V; Ip=200 uA; Vs=3 kV;
Vs1=Vs3=0; f=65 MHz; n,=0.037. (b) Same as (a) but
with 1, =0.14; Vo= —60 V; Io=110 uA; Vs=2 kV; f=55
MHz.

lowing considerations.'> From Fig. 2 we see that for

sufficiently small n,, saturation is associated with a local
flattening of the distribution function. The velocity
width of this flattening is roughly the trapping width
2Avr, where Av# =4eE g /mk. On the assumption that
the slope of the velocity distribution function of the beam
is constant over Avr and that kAvy/w <1, the power re-
quired to form the plateau is approximately APpeam
=nmAvi(w/k)*df/dv, where n is the density of elec-
trons per unit length. Equating this with the power in
the wave, Pyave =FE 21/2k R, yields the scaling k3 = Bk?,
where kj=(k/w)?kE/m. In obtaining this scaling
we have assumed that the wave-power saturation corre-
sponds to a very small positive slope of the local plateau
in the distribution function which just balances the dissi-
pative damping (k;o) due to the Ohmic losses in the
helix. The constant B depends sensitively on the exact
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FIG. 4. Electric field at saturation vs growth rate. V=120
V. Vs=3kV; Vs1=115V; Vs3=0; f=50.0 MHz.

size and shape of the final distribution function and is
too crudely calculated for a meaningful comparison with
the experiment. One can show'® more generally that if
one assumes that the slope of the unperturbed velocity
distribution function is a constant, then the Vlasov-
Poisson equations scale according to the trapping scaling.
We also note that if df/dv were not constant over 2Avr
the scaling would be different.!> In Fig. 4 we show the
scaling of the saturation electric field with the growth
rate. The solid line is a line of slope 2 drawn through the
points indicating the trapping scaling. A least-squares fit
of the points gives kg ek with @ =1.94 £ 0.20, which is
in excellent agreement with the trapping scaling. Both
the growth rate and the saturation electric field are mea-
sured. The growth rate is varied by our varying the total
beam current and keeping the beam voltage fixed. That
is, the beam density is varied. We have arranged the
phase velocity of the wave to be far from the peak of the
distribution function. The shape of the distribution func-
tion is such that §f/dv is constant over an increasingly
wider velocity range as the velocity decreases from that
of the peak of the distribution.

To summarize, we have observed the growth and satu-
ration of a single wave on a warm-beam, slow-wave-
structure system. The nature of the distribution function
at saturation depends on 7, =k;o/k?Av. When 7, is
sufficiently small, the distribution develops a localized
plateau and the saturation electric field scales as the
square of the growth rate in agreement with the trapping
scaling. When 5, is larger the entire distribution func-
tion can become distorted.



VOLUME 59, NUMBER 24

PHYSICAL REVIEW LETTERS

14 DECEMBER 1987

We wish to thank T. M. O’Neil and A. Simon for
valuable conversations. One of the authors (F.D.) grate-
fully acknowledges the hospitality of the Physics Depart-
ment of the University of California, San Diego, where
this work was performed. This work was supported by
the National Science Foundation under Grant No.
PHY83-06077.

@present address: Laboratoire de Physique des Milieux
Ionisés, Ecole Polytechnique, 91128 Palaiseau Cedex, France.

(®)permanent address: Laboratoire de Physique des Milieux
Ionisés, Ecole Polytechnique, 91128 Palaiseau Cedex, France.

L. D. Landau, J. Phys. (Moscow) 10, 25 (1946).

2J. H. Malmberg and C. B. Wharton, Phys. Rev. Lett. 17,
175 (1966).

3T. M. O’Neil, Phys. Fluids 8, 2255 (1965).

4P. J. Vidmar, J. H. Malmberg, and T. P. Starke, Phys.
Fluids 19, 32 (1976).

SW. E. Drummond and D. Pines, Nucl. Fusion, Suppl. Pt. 3,
1049 (1962); A. A. Vedenov, E. P. Velikhov, and R. Z. Sag-
deev, Nucl. Fusion 1, 82 (1961).

SB. D. Fried, C. S. Liu, R. W. Means, and R. Z. Sagdeev,
University of California, Los Angeles, Plasma Physics Group

Report No. PPG-93, 1971 (unpublished).

"W. E. Drummond, J. H. Malmberg, T. M. O’Neil, and
J. R. Thompson, Phys. Fluids 13, 2422 (1970); T. M. O’Neil,
J. H. Winfrey, and J. H. Malmberg, Phys. Fluids 14, 1204
(1971); I. N. Onischenko, A. R. Linetskii, N. G. Matsiborko,
V. D. Shapiro, and V. I. Shevchenko, Pis’ma Zh. Eksp. Teor.
Fiz. 12, 407 (1970) [JETP Lett. 12, 281 (1970)].

8A. Simon and M. N. Rosenbluth, Phys. Fluids 19, 1567
(1976).

9J. Denavit, Phys. Fluids 28, 2773 (1985).

10J. R. Pierce, Traveling Wave Tubes (Van Nostrand, New
York, 1950).

1S, 1. Tsunoda, F. Doveil, and J. H. Malmberg, “Experimen-
tal Test of Quasilinear Theory” (to be published).

12G. Dimonte and J. H. Malmberg, Phys. Fluids 21, 1188
(1978); S. I. Tsunoda and J. H. Malmberg, Phys. Fluids 27,
2557 (1984).

3F. Doveil, S. I. Tsunoda, and J. H. Malmberg, “Controlled
Production of Warm Electron Beams” (to be published).

14J. H. Malmberg, T. H. Jensen, and T. M. O’Neil, in Plas-
ma Physics and Controlled Nuclear Fusion Research (IAEA,
Vienna, 1966), Vol. 1, p. 683.

15J. M. Dawson and R. Shanny, Phys. Fluids 11, 1506
(1968).

16T, M. O’Neil, private communication.

2755



