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Observation of Envelope Solitons in Solids
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Physics Department, University of California, Los Angeles, California 90024
(Received 4 September 1987)

We have observed highly nonlinear localized wave packets propagating as flexural modes of thin
shells. They maintain their structure in a collision and have envelopes in quantitative agreement with
the soliton solutions to the nonlinear Schrodinger equation.

PACS numbers: 43.25.+y, 62.30.+d

Since the first observation in 1834 of a soliton in a ca-
nal,! the potential importance of coherent long-lived lo-
calized states of continuous media driven far off equilib-
rium has received considerable attention.'* Solitons ap-
pear to be physically favored in one-dimensional systems,
though they have been predicted in two-dimensional sys-
tems.?> Linearly stable solitary waves have been derived
from the Gross-Pitaevskii equation in three dimensions.®
Apart from observations in the Andaman sea,’ naturally
occurring solitons have eluded observation, but they have
been predicted to play a role in biological systems such
as macromolecules which are largely one dimensional.®
In this paper we report the observation of the formation
of envelope-type solitons in an elastic medium.

Part of the motivation for this work finds its origin in
the mechanics of “natural engines.”® In this regard, our
goal is to determine whether the spontaneous symmetry
breaking which leads to soliton formation would elimi-
nate the need for the externally imposed ‘“‘broken ther-
modynamic symmetry,” such as is realized with the
stack of plates in the acoustic engine. In addition, could
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a macroscopic soliton act as a means of focusing heat as
well as mechanical energy? Another important goal is
the generation of nonpropagating solitons'® in elastic
media.

The elastic medium in which we set out to search for
soliton behavior is a seamless, open-ended, nickel, cylin-
drical, thin (0.009 cm) shell made by an electroplating
process and having dimensions shown in Fig. 1. In order
to approximate fixed-boundary conditions, the top and
bottom rims are thick (0.028 c¢m) compared with the
shell thickness. The shell is supported by six pairs of
monofilament nylon threads under almost vertical ten-
sion. The shell is excited by an acoustic beam generated
by a horn driver with a mouth area of 20 cm?, coupled to
a horn whose cross-sectional area decreases exponential-
ly to about 3 cm? This means of transduction is found
to be superior to direct electrostatic or electromagnetic
forcing of the shell. The elastic waves so generated in
the shell are flexural in character and have both an axial
x and circumferential y component; p and g are the cor-
responding modal eigennumbers.
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FIG. 1. Experimental arrangement.
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Our reason for studying thin shells is that this system
has a huge dispersion, large quality factor Q, and high
nonlinear response. Such a combination of parameters
generally makes structure formation (e.g., solitons) in
off-equilibrium systems accessible to observation.

The reversible dispersion, which is due to a nonlinear
dependence of frequency on wave number, is apparent
from the measured spectrum of small-amplitude vibra-
tion shown in Fig. 2. We have investigated modes in
which p is always 1 and g ranges from 6 to 32. The only
modes which we failed to excite (for unknown reasons)
were ¢ =9, 10, and 19. The minimum in the spectrum is
interesting in its own right (note some similarity with the
roton minimum in superfluid helium), and for a uniform
shell the dispersion law is calculated to be'
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where £=rRp/Lq, e=q*h*/R* and p is the volume
density of the material, E is Young’s modulus, v is
Poisson’s ratio, L is the height, R the radius, and A the
thickness of the shell. The solid line in Fig. 2 is a plot of
Eq. (1) for this shell; w =2xf, where f is the frequency.

The amplitude-dependent nonlinear response of the
shell is determined from the shift df in the resonant fre-
quency of the mode p=1, ¢=23, as a function of the
shell’s flexural displacement amplitude z. The measured
shift is given by

df/ f=yz%h?, (2)

where y= —23.

To measure z we used capacitive transducers mounted
on a brass ring (Fig. 1). The ring is coaxial with the
shell and can be rotated about the axis. The transducers
are used to probe the radial displacement of the flexural
modes. Another single, similar transducer can be moved
along the axial direction in order to measure displace-
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FIG. 2. Dispersion law for the (I1,q) modes; the crosses are
experimental data.

ment as a function of height along the shell. The trans-
ducers were independently calibrated with a B&K vibra-
tion exciter and accelerometers. They are still linear to
within 5% at amplitudes that exceed by a factor of 10
the iargest amplitudes reported herein. The conversion
factor from voltage output to displacement amplitude is
1.60x10 73 cm/mV. The maximum amplitude achieved
near 1120 Hz is 2x10 % cm, which corresponds to a
Mach number of about 10 "% At these amplitudes the
frequency shift due to nonlinearity is approximately 5
times the bandwidth due to attenuation, the Q being
about 500.

In a typical experiment, a flexural wave pulse is gen-
erated by our blasting the shell with an acoustic wave
train that is five waves long. In Fig. 3 the top curve is
the wave pulse at 1120 Hz applied to the horn-driven
unit. The three oscilloscope traces shown in Fig. 3 give
the response of the shell at 120°, 185°, and 240° (see
Fig. 1) relative to the drive. Note the two localized
packets clearly visible at 240° and 120° in Fig. 3. For
reasons discussed below, we claim that these packets are
envelope solitons. The larger-amplitude packet arrives
first at the 120° transducer and is therefore an envelope
soliton traveling clockwise (CW) at a velocity found to
be 26 m/s. The smaller-amplitude packet arrives first at
240° and later at 120° and is therefore an envelope soli-

240° V\/\[\WN\/\/\P’\/\/\/\/\A{W\[\N\/\/
185° W/\M/\/\WWWWMVW\ANW
o W/\/\WJW\AMMMNWW

0 10 20

Time (ms)

FIG. 3. Collision of CW and CCW envelope solitons as
shown by oscilloscope traces.
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ton traveling counterclockwise (CCW) at a velocity
found to be 23 m/s. The displacement observed at 185°
occurs where two wave packets overlap or collide. The
solitons emerge unscathed from the collision and further-
more the strong nonlinear nature of this interaction is in-
dicated by the fact that the sum of the amplitudes of the
separate solitons is about 25% greater than the max-
imum amplitude observed at 185°. For small-amplitude
(about 2% of those at which solitons form) pulses, the in-
teraction packet is observed to be the sum of the CW
and CCW pulses. Even in the linear limit, the apparent
group velocities for the CW and CCW packets are
different. These velocities are the same as for the CW
and CCW solitons. We believe that a given mode g can
give rise to different apparent group velocities for CW
and CCW motion because of the splitting of CW and
CCW degeneracy by effects which break axisymmetry.
This splitting (see Fig. 2) is a strong function of mode
number. By driving of the shell at a different location,
the time-reversed state to Fig. 3 can be easily generated.
Our experiments indicate that at the maximum ampli-
tudes of drive available, the most localized packets are
obtained by driving of the shell at a location which max-
imizes the difference in group velocities of clockwise and
counterclockwise pulses.

Figure 4 is a plot of the response at the 120° transduc-
er during a time span for which a pulse would travel
about four circuits of the shell; 4, A,, and A4; refer to
successive recordings of the CW soliton/packet, and By,
B,, and Bj refer to the CCW soliton/packet. The 30%
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FIG. 4. Temporal response of the shell (as measured at the
120° transducer) to a drive pulse 5 ms long.

attenuation between 4, and A3 (or B, and B3) destabi-
lizes the structure and leads to the eventual dispersion of
the pulse as indicated. The envelopes drawn through A,
and A correspond to the best-fit function of

(3)

so that the actual detailed displacement is z =Zcos(kyy
—wt), where k,=qg/R and for 4,, a=1.7x10"% c¢m,
a=0.14 cm ', and v, =26 m/s, while for 4,, a=1.4
x10"*cm and ¢ =0.13 cm ~!; vg is unchanged. For B,
the envelope (not shown) is a=1.2x10 "% cm, a=0.17

~!. The fact that a cosine cannot fit these packets is

z=asecha(y —uv,1),

cm
apparent from the inflection point near the half width.
The hyperbolic secant is characteristic of the stable
envelope-soliton solution to the nonlinear Schrédinger
equation (NLS),*'? which we write in the following
model-independent form:

(4)

where o is the frequency of the soliton and Sw, is given by (2). The NLS generally describes slow modulations of
quickly varying hyperbolic classical fields (e.g., optical pulses and surface waves). The soliton response results from the
balance between dispersion and nonlinear shift in resonance which can take place only when y and dzwq/dq 2 have op-
posite signs which is the case here. The localized solution to (4) then is

T=hl(0’—0d)/yoil*sechl(w} — w*)/owi1"*(x —,1)/R,

where 0, =d*w,/dg>.

Equations (4) and (5) connect the measured material
parameters y and w, to the theoretically predicted
stable, localized coherent state. To compare theory (5)
with experiment, say, 4;, we use the frequency of the
drive, 1120 Hz, for w/2x. For g we use the nearest,
higher mode which is g =23, so that w,/27=1124 Hz.
Unlike infinite systems, where the selection of ¢ is deter-
mined by the dominant side-band instability, here the
finiteness of the shell perimeter determines the particular
mode which is localized. These parameters already
determine the theoretical value a=1.6x10 "% c¢m, in ex-
cellent agreement with experiment. The theoretical cal-
culation of the soliton width a ~! requires d’w/dk?>.
Determination of this parameter from Fig. 2 is compli-
cated by the strong dependence of the splitting on mode
number. Thus, we chose to obtain this parameter from
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(5)

the first derivative of the measured clockwise group ve-
locity of small-amplitude pulses. Noting that d’w/dk >
=duvg/dk, we obtain the estimate d’w/dg>=24 s ' and
thus calculate @ =0.14 cm ~ ..

As y <0, the theoretical picture given here implies
that soliton formation cannot occur for @ near to but
higher than w,. By driving the shell at high amplitude
at 1124.5 Hz, we could only observe heavily dispersed
pulses with no semblance of the stable structures shown
in Figs. 3 and 4. Furthermore, the formation of the soli-
ton (w < w,) is robust as regards variation of the input
envelope of length of wave train.

The excellent agreement between theory and experi-
ment (for a and a) as well as the stability against non-
linear collision is our strongest evidence for interpreting
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these packets as solitons. This elastic system is obviously
quite rich (e.g., the splittings in @, and v,) and the ten-
dency to form solitons suggests the universality of this
phenomenon. On the other hand, at the drive amplitudes
which were available, we could only observe this effect
at g =23 which is precisely the mode where wg/k
=dw,/dk.

To the best of our knowledge, this is the first observa-
tion of an envelope soliton [i.e., a nontopological soliton]
in a solid. Earlier experiments on fluid surface waves
have been interpreted in terms of envelope solitons. '3

A basic difference between incompressible surface
waves and the elastic waves reported here are the associ-
ated thermal properties. These should prove to be an in-
teresting direction for further investigation.
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