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New View of Entanglements in Dense Polymer Systems
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A preaveraged topological parameter, N, is introduced to provide a criterion for the presence of entan-
glements in polymer melts. The theory predicts a geometrical transition from the entangled to the unen-

tangled state in agreement with experimental data. A generalized Rouse theory is used to describe poly-
mer dynamics in both states.

PACS numbers: 61.41.+e, 36.20.Ey, 62. 10.+s

In the reptation model for entangled polymers, ' a po-
lymer diftuses in a dense network of entanglements
formed by the surrounding chains. The model assumes
that the entanglements are suKciently long-lived that
diff'usional motion is essentially one dimensional in a
confining tube. The detailed conformation of the poly-
mer chain is replaced by a connected sequence of freely
jointed links corresponding to equal-sized segments of
polymer, whose length is equal to the mean number
of monomers between entanglements, N„which then
evolves in a stochastic earthworm fashion creating and
destroying the tube at the ends. The phenomenological
parameter N, is assumed to be a property of the entan-
gled chains and independent of the chain length. A
direct calculation of N„ for a particular system, has not
been accomplished because of the difhculty of topological
classification of entanglements. In practice, N, is used
as an experimental fitting parameter.

In this paper, we introduce a reformulation of the tube
Ansatz. The parameter N, is replaced by a new parame-
ter, N, called the coordination number, whose value is

expected to be universal. In the present theory, N is a
geometrical property of the entangling chains and can be
related to N, and N„ the critical chain size for the pres-
ence of long-lived entanglements. Polymer dynamics, in

the entangled state, can then be described by a suitable
projection of the Rouse equation onto a tube axis.
Several scaling properties of polymer melts and concen-
trated solutions followed directly from this theory.

Our system of interest consists of Gaussian mono-
disperse chains with N skeletal bonds, bond length l, and
bond number density p . Focusing on one chain, hereaf-
ter called the test chain, we inscribe a subsection of the
chain, with N, bonds, in a sphere of diameter N, ' l, i.e.,
the mean distance spanned by the N, bonds (see Fig. 1).
For the moment N, will be some arbitrary number less
than N. In a high-density system, several other polymers
will thread through this sphere and may be involved in

forming entanglements with the test chain segment, or
may restrict the lateral degrees of freedom of the chain.
With the help of Fig. I we can see that the probability of
this situation occurring is not independent of chain
lengths. For example, if we rescale all polymer lengths

according to N N/2 by simply cutting all polymers at
their midpoints (Fig. 1, lower part), some of our scissions
will occur within the test sphere. The new polymer ends
produced by this cutting will lessen the probability of
forming entanglements or having lateral constraints, and
increase the mean spacing between entanglernents ac-
cordingly.

We can quantify these arguments as follows. Let
N(m) be the mean number of other polymer segments
with exactly m bonds within the test sphere. Ascribing a

volume l to each bond, we can relate the volume of the

F'ICi. 1. Schematic illustration of the eftect of polymer
length on the spacing between entanglements. The heavy solid
line represents a portion of the test chain. In each picture the
lateral constraints are represented by the solid loops, enclosed
in a sphere with diameter N, ' l. In our model, a lateral con-
straint is related to the number of polymers, 'V (coordination
number), of length O(N, l), threading through the sphere and
surrounding a segment of test chain of comparable length. In

the upper part, the test chain is divided into six blobs, as
defined by the 6N constraining chains. In the lower part,
where the surrounding chains are shorter, the blob volume is

enlarged to enclose the same number of constraining chains per
blob. The dashed lines in the figure represent tail segments,
which are ineffective in constraining the diNusional motion of
the chain in our model. The lower part shows proportionally
more tail segments enclosed in the spheres.
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sphere, V„ to N(m) by

N

+V, =l' N, + g N(m)m
m=1

where V, =rrN, j I /6 and N here is the polymer volume
fraction. The first term on the right-hand side of Eq. (1)
is due to the test segment and the second term is due to
all other chain segments threading through the volume.
For more general polymers, that is with bond correla-
tions, side groups, etc. , the parameter + should be re-
placed with +=loC j I /p where p is the mass density,
p is the monomer molecular weight per skeletal bond,
and C is the characteristic ratio.

N(m) is a statistical quantity and can be computed by
Monte Carlo methods. The distribution of polymer seg-
ments, in the test sphere, can be divided into two contri-
butions,

which relates the number of nontail segments, N, to N, .
Up until now, N, has been an arbitrary length less than
N. We now make an Ansatz connecting N, with the
mean spacing between entanglements or lateral con-
straints, by imposing a value for N. We will choose N so
that, on the average, this number of neighboring nontail
segments will constrain the test segment's lateral motion.
These N segments can be either geometrical constraints
or complicated knotlike entities, but their precise nature
need not be specified. Once N is specified, then N, can
be computed, as a function of N, from Eq. (5), and inter-
preted as a mean constraint spacing. N is a preaveraged
topological parameter whose value is expected to be
universal ~

Several results can be readily obtained from Eq. (5).
For example, in the infinite-molecular-weight limit, N,
approaches a constant value

N (m ) N jtl s(ms) + Nppptjsi (sm )
lim N, =[6(N+1)/~] .+~ oo

(6)

where the two terms represent the numbers of segments
with tails and without tails having I bonds in the vol-
ume. With this definition, we can rewrite Eq. (1) as

NV, =I' N, +N, N+ g N«, 1,(m)m (2)

where we introduced a parameter, N, called the coordi-
nation number, given by

N

N =Ne ' g Nppptails(m)m
m=1

(3)

Like N(m), N„;i,(m) and N„,„,.„l,(m) can be computed
directly by Monte Carlo methods.

The physical interpretation of the coordination num-
ber is as follows. If all nontail segments, within the test
sphere, have the mean length N„ then N is the number
of such segments in the sphere. In general, there are
contributions to N from all lengths up to N. However,
segments with m «N, and rn»N, make a negligible
contribution to the summation in Eq. (3). Therefore,
we are justified in interpreting N as a measure of the
number of polymer segments with m =O(N, ) bonds in
the volume.

The tail contribution of Eq. (2) can be computed as
follows. Since the tail segments are uniformly distribut-
ed in space and the number of tails in the volume is
gN„. ;i, (m) =2@ V, /N, we can therefore write

N IV

g N, .„i,(m)m =(tail) g Nt, ,is(m)
m= 1 m=1

=p VN, /N, (4)

where we have approximated the average tail length as
(tail) = N, /2. Solving Eq. (2) for N, we find

N+1 = —,
' rrrrsN, 'j (1 —N, /N),

For any finite value of N, N, is larger than the asymptot-
ic limit. This is due to the increase in density of tails,
which are not effective in forming constraints in our
model. Figure 2 shows plots of N, vs N for several
values of N. Each curve terminates sharply at a value,
N, =3N, =", N, (pp), below which the mean number of
neighboring nontail polymers is less than the value re-
quired to restrict lateral motion geometrically. This
transition can be understood with the help of Fig. 1. We
have already argued that N, increases as the tail density
increases, i.e. , with shorter chains. In order to enclose
the same number, N, of other polymers, we must enlarge
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FIG. 2. The mean spacing between entanglements vs degree
of polymerization for several values of the coordination number
N The curves approa. ch a constant value of [6(N+1)jrrrts]

for large N. Each curve terminates abruptly at a lower critical
chain length N, =3 (N+1) j(~) . The transition to the
unentangled state is geometrical in origin and is due to the in-
crease in polymer tail density and the ineffectiveness of tail
segments in forming long-lived constraints.
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N

r(n) =2't N ' g r(p)sin(npn/N),
p=l

where r(p) is given by

(7)

N

r(p) =2' g r(n)sin(npn/N).
n=l

The corresponding relaxation times are given by

z(p) =a'(p) gN'l'/3n'kaTp',

where a (p) is the square of the strain ratio,

the sphere's diameter. As the sphere is enlarged, there is

an increasing probability that we will incorporate more
tails. This in turn will require that we increase the diam-
eter of the sphere further, which rapidly becomes a self-
defeating process leading to the phase transition.

Strong supporting evidence for the geometrical nature
of the transition can be found in experimental dift'usion

and viscosity data, where the onset of entangled behav-
ior occurs at a value of N, that is temperature indepen-
dent. Further evidence can be found in measurements of
the plateau modulus, G~, in solutions where the scaling
law Gg =pkaT/N, ~& is well established experimen-
tally in agreement with Eq. (6).

The influence of lateral constraints on polymer dynam-
ics can be investigated with a generalized Rouse model
developed originally for polymer solutions and applied
more recently to polymer melts. A similar approach
has been used to describe rubber elasticity. Like the
original Rouse model, the nth bond vector of the poly-
mer chain, r(n), is decomposed into Fourier modes ac-
cording to

fore represent the effect of entanglements by defining
wave-number- dependent longitudinal and transverse
friction coefficients, gt(p) and g, (p), respectively, as fol-
lows:

g((p) =gp, p =1,2, 3, . . . , N,

P
r(n) =2't N ' g r(p)sin(npn/N).

p=l
(i 2)

The effect of the cutoff, p, is to compute a weighted aver-
age over N/p =N, bonds around bead n. The result is a
blurred image of the chain which retains the same over-
all conformation, but lacks the small-scale details of the
chain conformation. The appropriate cutoA gives the
minimum number of constraining chains, as defined ear-
lier, required to define the tube.

We now decompose the Langevin equation for each
bond into longitudinal and transverse modes by project-
ing each Rouse bond along the tube axis. The relaxation
times of the tube modes, or equivalently the polymer lon-
gitudinal modes, are given by

p =P +1,P +2, . . . , N,

p=1,2, 3, . . . ,P,
, (p) = '

where p is a cutoA wave number chosen to have the val-
ue P =N/N, . The effect of a very large, or in the present
model infinite, transverse friction coefficient is to retard
the lateral diflusion over length scales larger than the
mean spacing between entanglements.

In order to give a formal definition to the longitudinal
and transverse directions, we define a "tube" axis with a
set of vectors r(n), given by the truncated Fourier series

(1O) zt(p) =(k (p))N&p/3n kaTp, (i3)

and g is a bead-spring coefficient. The averages above
are interpreted as follows: ( ) represents an average over
the real chain configuration and ( )p represents an aver-

age over unperturbed chains. For a polymer melt of con-
centrated ideal solution, a (p) =1. For entangled poly-

mers, a (p) =1 also holds, but the evolution of the poly-
mer's conformation must be anisotropic in accordance
with the geometrical constraints imposed by the sur-

rounding polymers. To see this more clearly, consider
the polymer chain depicted in Fig. 1. To displace the
chain through a finite distance roughly along the contour
of the chain conformation, one will encounter a certain
amount of frictional resistance. A displacement perpen-
dicular to the chain axis will meet with even greater
resistance, if the magnitude of the displacement exceeds
the spacing between entanglements. Therefore, the pres-
ence of entanglements destroys the 3D isotropy of the
polymer s diffusional motion and yields nonequivalent
longitudinal and transverse modes of motion.

In the framework of the Rouse theory, the interactions
with other chains are purely frictional. We will there-

&& '(p)) =' (i4)0, even p.

Therefore, the longitudinal-mode relaxation times for
odd values of p are

zt(p) =[2l AN/3n N, kaTp ]cot (np/2N) (is)
which for small values of p yields zt(p) ~N /N, p .

The transverse relaxation times can be obtained in a
similar fashion. For wave numbers p & p, that is for
diflusion of segments shorter than N„ the test chain is
not influenced by the entanglements and we have

z, (p) =/pl N /3n kBTp . (i 6)

For wave numbers p (p, diflusion is hindered and the
relaxation times are infinite in the present model. Addi-
tional nonreptative processes, such as the release of con-
straints, ' would contribute to the transverse relaxation

where (k (p))/Nl is the square of the strain ratio com-
puted along the tube axis. After some algebra we ob-
tain, to leading order in N,

(2l /N, ) cot (Rp/2N ), odd p,
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( ) N3+y(N)( 4 (17)

where the coefficient y(N) varies continuously from a
value of about & just above N, and tends to zero as N is

increased further. This effect will contribute to devia-
tions from the ~I ~N scaling law as will contour-length
Auctuations" which have not been included here.

To summarize, we have presented a reformulation of
the entanglement concept by making an Ansatz connect-
ing lateral constraints with the presence of a certain

over these length scales.
Combining Eqs. (5), (15), and (16), we have a pre-

scription for describing polymer dynamics in both the
unentangled and entangled states. Equation (5) provides
a criterion for the determination of the presence of la-
teral constraints through a single parameter N. If N is

less than the computed value of N„ then the dynamics of
the polymer is described by Eq. (9) and is essentially iso-

tropic in three dimensions.
In the entangled regime, N )N„Eq. (5) is used to

compute N, . The longitudinal and transverse modes of
relaxation are described by Eqs. (15) and (16), respec-
tively. The value of N, is not constant and must be com-

puted for every value of N as depicted in Fig. 2. The N
dependence of N, in the longitudinal relaxation times
modifies the scaling exponent in Eq. (15) to give an

effective scaling law of the form

number of neighboring nontail segments. The parameter
N„ in the original reptation theory, ' has been replaced
by a universal topological parameter N. This yields pre-
dictions relating the onset of entanglements at N, to the
value of N, and the various chain parameters. Scaling
laws for concentrated solutions were then derived
without additional assumptions. A generalized Rouse
model and prescription for its application to entangled
systems were proposed. Our approach can be general-
ized to other systems such as concentrated solutions in

various solvents and homopolymer blends and will be
presented in a future article.
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