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The embedded-atom method, a semiempirical theory of metal bonding, is investigated as a method to
calculate the bonding in a covalent material. A simple first-neighbor embedded-atom method model is
sufficient to explain the geometry and structure of many metastable phases of silicon, but not its shear
behavior. To obtain realistic shear behavior of silicon, an angle-dependent electron density is included to
model the effects of bond bending. This model uses only the experimental bulk properties of silicon.
Calculated properties of metastable phases and point defects are presented.

PACS numbers: 61.50.Lt, 61.70.Bv

Atomistic simulation of a large number of atoms with
use of molecular dynamics or Monte Carlo methods is
a powerful technique for answering questions about
structural transformations. Underpinning these calcula-
tions is the assumed atomic interaction potential. It
would, of course, be desirable to take these interactions
directly from first-principles calculations; however, even
with current high-speed computers such calculations are
orders of magnitude too slow for the millions of energy
evaluations necessary to examine the complex systems of
practical interest. Thus in order to obtain useful atomic
interactions researchers have developed empirical and
semiempirical potentials. Specifically for silicon there
has recently been a considerable amount of interest in
the development of empirical potentials.'”® Most of
these potentials have drawn upon the results’ of density-
functional [local-density approximation (LDA)] theory
calculations of various structures of silicon. Thus, in
contrast to the Keating silicon potential® which only
fitted equilibrium bulk properties, these potentials are
hopefully applicable far from equilibrium and therefore
are useful for making structural predictions. In general
they work well in the regime of where they were fitted.
However, there are a number of problems with these po-
tentials. Since they are strictly empirical, there is no
way to easily extend their applicability to more compli-
cated systems, e.g., alloys. In addition, their functional
forms are quite complicated, leading to difficulty in com-
putation as well as in basic understanding. No single po-
tential represents all of the properties of silicon well.

At the same time as these improvements were being
made in the understanding of the interactions in silicon,
Daw and Baskes® were developing the embedded-atom
method (EAM) to describe interactions in metals. The
EAM is a semiempirical method based on local elec-
tron density theory which has been shown to accurately
describe a large number of properties in metals, e.g.,
defects,'® liquids,!' surfaces,®!%!? alloys,'® mechanical
properties, !> and hydrogen on surfaces.'® The evaluation
of the energy with the EAM is rapid enough so that
thousands of atoms may be considered in molecular dy-
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namics or Monte Carlo simulations.

It is the purpose of this Letter to show that a formal-
ism based on the EAM may be used to describe the co-
valent bonding in a material such as silicon. The fact
that the EAM, which was developed to model metallic
bonding, is also sufficient to describe covalent bonding is
not intuitive; in fact, the success of this relatively simple
model is somewhat surprising. Further work is in pro-
gress to explain why this model works so well. It should
be noted that the LDA, on which the EAM is based,
works for both metallic and covalently bonded materials.
In fact, silicon itself is metallic in the close-packed struc-
tures. With only bulk experimental properties for dia-
mond silicon, the model developed below gives semiquan-
titative agreement with structural properties of silicon
calculated from LDA theory. It is straightforward to ex-
tend this model to include the effects of alloying addi-
tions or impurities. Thus, the prediction of structural
stability of strained layered superlattices is now at hand.

Let us start with a simple first-neighbor model of a
homogeneous solid. In the EAM® the energy, E, of each
atom in a monoatomic solid is given by

E(r)=F(np°(r))+0.5n,0(r), (1)

where n; is the number of first neighbors in this refer-
ence structure, p“ is the spherically averaged atomic
electron density at a distance r from the nucleus, ¢ is the
pair interaction, and F is the embedding function. The
reader is referred to the EAM references above for more
details about the method. For a uniform expansion or
contraction, this energy is well described by a universal
function, '’ E,:

E (a*)=—E¢(1+a*)e %, (2)

where a* =B(r —r|), E, is the sublimation energy, r, is
the equilibrium first-neighbor distance, and S=(9B Q¢/
r?Eo) 2, where B is the bulk modulus and Qg the equi-
librium atomic volume. We may use Egs. (1) and (2) to
solve for the pair interaction ¢.

Let us now calculate the energy, E,, of a solid in a
different crystal structure with n first-nearest neighbors.
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Inserting the pair interaction in Eq. (1), we get
_n * a n a
E,,——n——E,(a )+ |F(np )—;—F(nlp ). (3)
1 1

At this point we take the embedding function to be given
by

F(p)=Ey(p/p)In(p/p), (4)

where p is the density an atom sees at equilibrium in the
initial reference structure (n; neighbors). The justifi-
cation for an embedding function with this form will be
seen below. Then

E,=/n)E (a*)+Eo(np?/p)In(n/n,). (5)

At equilibrium for small changes in first-neighbor dis-
tance,

r—ri=[—n,(p";=, /8% In(n/n,). (6)

To see if, in fact, this relationship is meaningful, the cal-
culations of Yin and Cohen’ for silicon are shown in
Fig. 1 as the change in first-neighbor distance versus
In(n/n,). The reference structure is taken as diamond
cubic. As predicted by Eq. (6), the data fall in a straight
line. Also shown in Fig. 1 are the results of quantum
cluster calculations of silicon single-, double-, and
triple-bond lengths,'® which are seen to fall on the same
line. This logarithmic relationship between bond length
and number of bonds has been noted previously by Paul-
ing'” for covalent bonds in both carbon and metals. The
simple EAM model explains this relationship nicely.
The key to this agreement is the functional form chosen
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FIG. 1. Change in first-neighbor distance (r —r;) in ang-

stroms relative to diamond silicon as a function of the ratio of
the number of nearest neighbors to that in diamond silicon,
n/ni. The quantum cluster calculations are for single, double,
and triple bonds in silicon. The line is drawn as a guide to the
eye. Circles are the density-functional calculations (Ref. 7)
and squares are the quantum cluster calculations (Ref. 16).

for the embedding function [Eq. (4)]. At this point we
use this agreement to justify the specific form we have
taken; hopefully, a theoretical justification will follow.
With the slope of this curve to determine p? (as a simple
exponential, for example), the values of the equilibrium
energies [Eq. (5)] are within a few tenths of an electron-
volt of the calculated energies of Yin and Cohen’ for
various metastable silicon structures.

This agreement with structural energies and bond
lengths gives one a hope that most of the bonding infor-
mation is contained in the EAM formalism. However,
there are two major problems with the simple treatment
just presented. Both problems are related to the elastic
shear constants. For the diamond structure, a first-
neighbor central-potential model gives C;; =C,,. (See
Daw and Baskes® for expressions for the elastic constants
in the EAM.) This condition is strongly violated for sil-
icon (see Table I). However, by inclusion of additional
neighbors in the model, it is easy to satisfy the experi-
mental values of Cy, and C».

The second problem is a more difficult one to solve.
The Cauchy discrepancy, Cj; —Ca4, in the EAM is pro-
portional to the second derivative of the embedding func-
tion,” which from Eq. (4) is positive. The experimental
Cauchy discrepancy for silicon is negative (see Table I).
This is clearly an unacceptable situation. Addition of
more neighbors does not solve this problem at all. The
source of the problem lies in the directionality of the
bonding in silicon. Since the model, as formulated,
spherically averages the electron density, this directional-
ity is lost. However, a small modification of the model
may be made to include these bond-bending forces.

To include the effects just discussed, we now recast
the model including more distant neighbors and angle-
dependent density. The total energy, E, of a solid is
given by

E=ZF(p,~)+;-Z¢(R,-j), (7)
i i=j

pi =Y p*(R;;)
J#Ei

—a) (1—3cos?0;u)p*(R;;)p*(Ry), (8)
J#=i
k=i

TABLE I. Values of the parameters in the silicon model.
Units are electronvolts for energy, electronvolts per cubic
angstrom for elastic constants, and angstroms for distance.

Experimental data Model parameters

Eo, 4632 a, 3.2
B,0.61° a, 1/3
ri, 2.351°¢ re, 5.0
Ciy, 1.03°
Ci2, 0.40°
Caa4, 0.49°

2Reference 18. °Reference 20.

bReference 19.
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where R;; is the distance between two atoms i and j, 6
is the included angle between atoms j, i, and k, and a is
a constant to be determined by fitting to the shear modu-
li. The density is given by two terms, the linear superpo-
sition of atomic densities and an angular correction term.
The specific angular form for the density was chosen to
minimize the total energy under a tetrahedral distortion
of the electron density as well as to vanish in ideal cubic
structures. It may be considered as the first term in an
expansion in spherical harmonics as used by Biswas and
Hamann.! Since the angle-dependent term must de-
crease in magnitude as a function of distance, it is natu-
ral to use the decreasing atomic electron density to scale
this decrease. Other distance scaling was not able to
reproduce both shear moduli. The embedding function is
given by Eq. (4).

For the monatomic homogeneous solid under uniform
expansion or contraction, the energy per atom is now

E(r)=E (a*)=F(p;(r))+0.5n,®(r), 9)
®(r) =3 ola;rIn/n,, (10)

where r is the first-neighbor distance, n; is the number of
sth neighbors, and a; is the ratio of the sth-neighbor dis-
tance to the first-neighbor distance. Note that in the ex-
pression for p; [Eq. (8)], the angular part sums to zero
for cubic structures and p; =Y n,p?(a,r). It is straight-
forward to solve Eq. (9) for @, as above, but to obtain ¢
requires a cutoff, ., so that beyond r. all functions are
zero. Then
2
E] ®a3r), (1)

0(r) =0(r) — Y @(a,r)+ {n
1

s=| n

r> rf/a2a3

which turns out to be a sufficient range for our purposes.

Hence as above, we are able to obtain the pair poten-
tial from the universal function'> for the reference struc-
ture and an assumed form for the embedding function.
To summarize, the energy is given by Eq. (7) with the
embedding function from Eq. (4), the density from Egq.
(8), and the pair potential from Eq. (11).

The next step is to determine the parameter a and the
atomic density, p?, by fitting to the experimental elastic
shear moduli.'® The results of the fit are given in Table
I, where the atomic density was assumed to take the
form

p?(r) =(r/r)% "7, (12)

Since only density ratios are used in the models, the den-
sity may be taken to be unity at the equilibrium first-
neighbor distance with no loss of generality. Hence the
density and the parameter a are dimensionless. This
form gives the dominant long-range radial dependence of
the 3s and 3p electron densities for a silicon atom. The
atomic density for silicon has a=4 A ~!.2! Previously
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for metals® we were able to use the calculated?' atomic
density. For silicon this density does not seem to work.
The value for a implies a more diffuse electron density
than is found in the atom. This effect is presumably due
to hybridization. The cutoff is chosen large enough (5
A) to be relatively unimportant. The functions are cut
off smoothly over the 0.5 A before the cutoff. The calcu-
lated structural energies may change on the order of
tenths of an electronvolt with changes in the cutoff pro-
cedure.

The model reproduces the experimental bulk lattice
constant, sublimation energy, and bulk modulus of dia-
mond silicon exactly, and the individual elastic constants
to within 5% of experiment. The diamond structure is
predicted to be the most stable phase. The predicted
equilibrium lattice constant and energies for a number of
structures are given in Table Il and Fig. 2. It may be
seen that these results agree with LDA calculations to
within a few tenths of an angstrom or electronvolt. This
agreement may be considered quite good since there are
no free parameters. It is instructive to compare the
current results with the recent silicon empirical poten-
tials, some of which were fitted to the LDA data base.
In Fig. 2 the energies of the various metastable phases of
silicon are shown. Note that the current results (which
were not fitted) agree with the LDA calculations to the
same extent as the empirical potentials'** that were
fitted to at least part of the data base. The current
agreement is considerably better than those potentials®
which were not fitted.

In order to evaluate the model away from ideal struc-
tures the energetics of point defects and surfaces have
been calculated. The vacancy formation energy was
found to be 3.12 eV compared to the 5-6 eV ?* calculat-
ed with LDA. The T, (hex) interstitial was calculated
to be 5.70 (6.70) eV compared to LDA calculations of
5-7 (6-8) eV.?* Large error bars (=1 eV) have been
placed on these LDA calculations by the authors. The

TABLE II. Equilibrium lattice constants of silicon struc-
tures. Value of ¢/a given in parentheses.

Lattice constant (A)

Structure This work LDA calculations

Diamond (44)? 5.43 5.45¢

Wurtzite (B4) 3.84 (1.63) 3.86° (1.63)5¢
Cubic (44) 2.61 2.53¢
Hexagonal (A4y) 2.75 (0.95) 2.62°(0.93)°

B-tin (45) 4.83 (0.62)  4.83°(0.55)°, 4.76% (0.53)¢
fcc (41) 4.19 3.89¢

bee (A42) 3.25 3.09°¢

hep (A43) 2.96 (1.63) 2.74 (1.63)°°

3Experimental lattice constant 5.43 A (Ref. 20).
®c/a held fixed.

“Reference 7.

dReference 22.
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FIG. 2. Calculated energies of various structures of silicon.
Both first-principles calculations (LDA) and empirical and
semiempirical calculations are presented. The current work,
with no free parameters to fit the LDA structural energies,
agrees with the LDA calculations as well or better than the
other calculations shown. Crosses within squares, current
work; open squares, Dodson (Ref. 4); open circles, Tersoff
(Ref. 3); triangles, Biswas and Hamann (Ref. 1); crosses, Stil-
linger and Weber (Ref. 2); inverted triangles, Pearson, Takai,
Halicioglu, and Tiller (Ref. 6); filled circles, LDA (Ref. 7);
filled squares, LDA (Ref. 22).

surface results indicate similar agreement with LDA cal-
culations and experiment. These results are presently
being prepared for publication.

In conclusion, we have shown that a semiempirical
model, based on the EAM but including an angle-
dependent electron density, can be applied to silicon.
The major advantages of this model over previous empir-
ical models are (1) its simplicity and (2) its straightfor-
ward application to alloy systems. The model uses the
experimental bulk diamond-silicon lattice constant, sub-
limation energy, and elastic constants. There are no ad-
ditional free parameters. The LDA structural geom-
etries as well as energies are reproduced quite well.
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