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Elastic Constants of Crystals from Linear-Response Theory
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We propose a new scheme to calculate the elastic constants of solids which is based on linear-response
theory. Elastic constants are given directly by a single self-consistent calculation (i.e. , they are nor ob-

tained by numerical diff'erentiation of total energies or stresses). As an illustration, we apply our pro-

cedure to the determination of the equilibrium lattice constant, bulk modulus, and pressure derivative of
the bulk modulus of silicon.

PACS numbers: 62.20.Dc, 63.10.+a, 71.10.+x

It is well known that normal frequencies associated
with microscopic displacements of ions in crystals (i.e. ,

phonon frequencies) are closely related to the electronic
linear response (LR) of the undistorted crystals. ' Elas-
tic constants can be viewed as normal frequencies associ-
ated with homogeneous strains, i.e., macroscopic distor-
tions of the crystal. In any finite system, there is no con-
ceptual diAerence between a strain and a microscopic
distortion, and LR techniques are straightforwardly
applicable in both cases. In an infinite system, in con-
trast, a homogeneous strain changes the boundary condi-
tions of the Hamiltonian. As the use of perturbation
theory requires the existence of a common basis set for
the perturbed and unperturbed systems, macroscopic
strains have not been treated so far within LR theory.

A few years ago a technique was put forward to calcu-
late stresses in crystals within the local-density approxi-
mation (LDA); the state of the art in this field is to ob-
tain elastic constants from the stresses calculated at dif-
ferent strains. In a recent Letter, the present authors
have shown that the study of linear response in semicon-
ductors can be conveniently formulated in terms of an

appropriate self-consistent Green's-function technique.
However, the above-mentioned difhculties seem to indi-
cate that LR methods are not suitable to the study of
homogeneous strains.

The purpose of the present paper is to show that elas-
tic constants can indeed be obtained by LR theory much
in the same way as phonon frequencies. To this end, we
formulate the strain problem in terms of perturbation
theory, introducing a fictitious Hamiltonian which is re-
lated to the unperturbed one by a unitary transformation
and obeys the same boundary conditions as the strained
Hamiltonian. At first order we recover the expression
for the stresses derived by Nielsen and Martin from the
virial theorem. At second order we then obtain the
elastic constants; these are calculated in the LDA with
use of the LR theory.

For simplicity, in this paper we restrict ourselves to
isotropic strains. The anisotropic case follows straight-
forwardly. As an example, we apply the linear-response
Green's-function technique of Ref. 4 to the calculation of
the equilibrium lattice parameter, bulk modulus, and
pressure derivative of the bulk modulus of silicon.

In the LDA, the total energy of a crystal is given by

Eo=getr, , +J n(r)[axe(n(r)) pxc(n(r—))]d r — d rd r'+EJv~,3 "n(r)n(r') 3 3

where n(r) =g& „~ y& „, (r) ~, and eg, , and yt, „, (r) are given by

n (r')—V +g VJv(r —R)+2J d r' +pxc(n(r)) yq, , (r) =et, , yq, , (r),
r —r'

V~(r —R) indicates the interaction potential between electrons and an ion at lattice site R, ex~ and px~ are the
exchange-correlation (XC) energy density and potential of the homogeneous electron gas, and E» is the ion-ion in-
teraction energy. Atomic (Rydberg) units are used throughout. For clarity in the notation, we shall assume in the fol-
lowing that the electron-ion interaction V~ is local. The actual calculations, however, are performed with use of accu-
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rate norm-conserving pseudopotentials.

When the crystal is strained, the electron-ion interac-
tion is modified as

V,1v =gz V1v(r —R) V,1v =gz V)v(r —aR).

The pressure and the bulk modulus are given by P
(1/3V)(dE/da), =1, and 8 =(1/9V)(d E/da )

+ 3 P. The self-consistent Hamiltonian HspF defined by
Eq. (2) depends upon a not only via V;z but also impli-
citly through the self-consistent electron density n (r).
The difficulty of applying perturbation theory to Eqs. (1)
and (2) stems from the fact that the unperturbed and
strained Hamiltonians —Hsgp' and HsgF —obey differ-
ent boundary conditions. To cope with this difhculty, we
introduce a fictitious strained Hamiltonian obtained
from the unperturbed one through a scale transforma-
tion: HscF(r, V) =HscF(r/a, aV). The advantage of our

introducing HsgF is that it obeys the same boundary
conditions as the physical strained Hamiltonian, and
hence perturbation theory can be used to calculate the
relative energy diff'erence. At the same time, H~~p and
Hspp differ by a unitary transformation and their spec-
tra are trivially related: F~,, =ei, „„yi', , (r) =a
&yg„(r/a); n (r) =a n(r/a). As a consequence of
these relations, the energy difference between the ficti-
tious strained system and the unperturbed one is trivial
to obtain, as expounded below.

Our procedure to calculate the energy change due to a
strain thus consists of two steps: We first calculate the
energy difference between the unperturbed crystal and
the fictitious strained one described by HspF,. we then
compute the energy difference between the latter and the
physical strained system using perturbation theory. The
first step is trivial: From Eq. (1), the total energy of the
fictitious strained system, E', is related to the energy Eo
of the unstrained system in the following way:

=&0+„n(r)lexc(a n(r)) —exc(n(r)) —pxc(a n(r))+p x(cn(r))]d r

1 n(r)n(r') d, d, ,d rd r'.
r —r' (3)

As for the second step, we first note that the Hartree and XC terms in Hgcp are not the Hartree and XC potentials
generated by n . Hence, if we wish to interpret Hspz as a genuine Kohn-Sham Hamiltonian, we must modify the
definition of the external potential:

-a
HscF = —a V +V,„,(r)+2)r d r'+pxc(n'(r)),

! r —r'!
where

V,'„,(r) =g V)v(r/a —R)+2(1 —1/a) " d r' —pxc(a n(r/a))+pxc(n(r/a)).
! r/a —r'! (5)

The key point of our argument is that the energy difference between the fictitious and the real strained systems,
E —E, can be calculated by perturbation theory since Hggp and Hs~q obey the same boundary conditions.

Let us denote HscF —HscF by AHscF and the bare contribution to AHscF (i.e., the difference between the two Ham-
iltonians ignoring any charge redistribution) by AH0.

hH0 =(a —1)V +JR V~(r —aR) —V,'„1(r),
(6)

~HscF ~HO+)', d r +pxc(n (r)) pxc(n
I n (r') —n (r')

! r —r'!
Standard linear-response theory gives the energy
difference E —E up to second order in WHO.

pa pa+pa(1)+pa(2)+~~ +O({~Ha) 3)

where

E =pi, , {Pi, I &Ho I Y), ),

E =Re+i, , (hyq, , ! AH0! yq, , ),

and Ay is the correction to y calculated to first order
in AHscF. Each term E' " in Eq. (7) is a complicated
function of a whose leading order in a —1 is (a —1)".

The knowledge of terms up to E' " is thus sufhcient to
evaluate the nth-order derivative of the energy with
respect to a. Note that the dressed perturbation enters
the definition of Ay: As a consequence, a self-consis-
tent calculation is necessary to obtain it. Note also that
the perturbation defined by Eq. (6) is intrinsically nonlo-
cal not only because of the possible nonlocality of the
electron-ion interaction potential, but also because of the
kinetic-energy operator which enters its very definition.
It results that dielectric-matrix techniques are not suit-
able to treat macroscopic strains within the present for-
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malism, and one has necessarily to resort to the Green's-function linear-response technique expounded in Ref. 4.
a a[1)

In order to calculate the pressure, we expand Eq. (7) to first order in a —l. As remarked above, only E', E', and

AERY~ contribute to this order. Combining Eq. (7) with Eqs. (3) and (8), we finally obtain

dE,
dQ

=2+„ I/IP, , (r)V pq, , (r)d r+g J n(r)VV~(r —R) (r —R)d r
ic, (' R

d r d r'+3
I n(r) [axe(n(r)) —pxc(n(r))]d r+n(r)n(r') dE~g

r —r' de
(10)

Equation (10) is equivalent to the expression of the stress by Nielsen and Martin, ' specialized to the case of isotropic
strain.

Elastic constants are then obtained by the expansion of Eq. (7) to second order in a —1. Contributions from E and
E' ' are trivial; some care must be taken when we evaluate Eq. (9) to second order in a —1. One has

~Pi', (r) =g, yi' ~ (r ) ( Pv. I
&0scF I pi, , )/(&a, &g,, ),

E' =Re+). ., .(yi, I ~HscF I
yi', )(yi', . I

~Ho I |lit, )/(&g, (12)

Equation (12) is a well-defined function of a. However, when calculating matrix elements, we must distinguish be-
tween the implicit dependence of operators and wave functions upon e—which comes from the fact that they are ex-
pressed in terms of the scaled variable r/a —and any other exp/icir dependences. The former dependence does not give
any contribution since it only aAects dummy integration variables. In order to keep the second order in e —1, one has
then to keep consistently the first order in the matrix elements appearing in Eq. (12). To first order in a —1, the matrix
elements of 600 are

(yi', , I AHO
I fr(, , ) =(a —1) I2 yg, (r)V y~, , (r)d r+g yg, (r)yg, , (r)[VV~(r —R). (r —R)]d r

R

—2 [n(r')/Ir —r'I]yg, (r)yq, , (r)d rd r' —3J"yq, (r)y~, , (r)p x(cn(r))n(r)d r

Besides Eq. (13), the matrix elements of AHscq depend
upon the charge redistribution,

hn'(r) =2 Re+&, ,
Ayit'„, (r) fii'„, (r),

through the Hartree and XC potentials. An'(r) must
thus be calculated self-consistently. The dependence of
hn'(r) upon a is of the form An'(r) —(a —1)f(r/a).
According to the previous considerations, the overall
scale factor I/a does not contribute to the matrix ele-
ments of the Hartree and XC potentials, and they de-
pend upon e only through the o; —1 prefactor. We have
now all the ingredients to apply the self-consistent tech-
niques of Ref. 4 to the calculation of the elastic constants
of crystals.

Actual calculations have been performed for silicon
with the use of a plane-wave (PW) basis set and ten spe-
cial points for Brillouin-zone integrations; norm-con-
serving pseudopotentials, as well as other technical de-
tails, are the same as in Ref. 4. We have performed
several calculations at difIerent lattice spacings a and
diferent kinetic-energy cutoff's E,„t used to define the
PW basis set. Within our technique, a single calculation
is enough to provide the energy per cell, the pressure P,
and the bulk modulus B. With the use of these data, the
equilibrium lattice constant ao is also trivially predicted

by a single calculation. The pressure derivative of the
bulk modulus, B', is instead obtained by finite-difference
difIerentiation. Our results are summarized in Table I.

We stress that —contrary to common practice —nei-
ther the pressure nor the bulk modulus is obtained by
numerical differentiation. As these are delivered directly
by our procedure and not as differences between nearly
equal numbers, the numerical accuracy is greater than
that usually obtained so far, as can be seen by a compar-
ison of the calculated value of B' with experiments. This
is a distinct advantage shared by this technique with the
direct determination of phonon frequencies expounded in
Ref. 4. Contrary to the case of phonons, but analogous
to the calculation of stresses performed so far, the
present results are rather sensitive to the size of the
plane-wave basis set. As a consequence, even though
sensible results can be obtained with moderate kinetic-
energy cutoff's, rather large ones are necessary to obtain
fully converged results. This is so because our formulas
provide the exact value of the derivatives of the total en-
ergy, with the number of plane waves kept fixed. By now
it is well known that the errors introduced by the use of a
moderate number of PW's (=100-200 per atom) do not
aff'ect on the average the energy differences relevant to
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TABLE I. Pressure P, bulk modulus 8, predicted equilibri-
urn lattice parameter ap, and pressure derivative of the bulk
modulus B', as functions of the lattice spacing a and kinetic-
energy cutoff E, t.

Ecut
(Ry)

14
18

22

30

a
(a.u. )

10.20
10.10
10.20
10.30
10.10
10.20
10.30
10.10
10.20
10.30
10.20

P
(kbar)

—37.32
19.87

—10.01
—36.18

28.21
—1.70

—27.86
29.72
—0.26

—26.52
—0.36

B
(kbar)

1044
1119
996
883

1087
965
852

1077
955
842
955

ap
(a.u. )

10.08
10.16
10.17
10.16
10.19
10.19
10.19
10.19
10.20
10.19
10.20

4.03

4.14

4.18

Experiment '
Present calculation
Previous calculation'

992
955
930

10.26
10.20
10.20

4.15
4.2
3.8

'Same experimental data as in Ref. 3b.
Best results from the present calculations.

'Previous calculations from Ref. 3b.

structural properties, if one keeps fixed the kinetic-
energy cutoff (and not the number of PW's). The com-
mon practice followed so far is to calculate the energy at
different volumes (or, more generally, at different strain
states) keeping the kinetic-energy cutoff fixed. As the
number of plane waves varies with the volume, the re-
sulting energy-versus-volume curve is ragged and it is

usually fitted by a smooth equation of state. The result-
ing values of ap, B, and B' depend somewhat on the ex-
plicit form of the equation of state and on the cutoff. A
reliable value of the lattice constant can be obtained with
rather low cutoffs (=12-14 Ry for Si), independently of
the detailed form of the equation of state. The bulk
modulus and its pressure derivative are ticklish quanti-
ties which depend more sensitively on the chosen equa-
tion of state and cutoff. The technique presented here is
the most accurate for their determination.

We conclude by summarizing the main goals achieved
in this work. As a matter of principle, we have shown
that —contrary to common belief —macroscopic distor-
tions of crystals can be dealt with along similar lines as
for any other perturbation. To this aim, the use of a pre-
viously developed Green's-function technique for treating
the linear response has been essential. From a more
practical point of view, the numerical efficiency of our
method should be compared with the "brute force" cal-
culation of total energies at different strains andjor with
the direct calculation of the corresponding stresses. In
the first approach, the numerical effort of a single calcu-

lation can be kept at a moderate level (=250 PW's),
provided several such calculations (typically =5) are
done in order to fit the results by some equation of state.
In the second approach (as well as in our own), a larger
basis set (=500 PW's) is necessary to obtain sensible re-
sults; a couple of calculations near equilibrium are neces-
sary in this case to obtain the equilibrium lattice con-
stants and, by numerical differentiation, the bulk mod-
ulus. As the numerical labor of a single calculation
scales as the square of the size of the basis set, we con-
clude that the cost of the two schemes is comparable.
Within the present scheme, the same numerical output
can be obtained by a single total-energy calculation near
equilibrium followed by a linear-response calculation
along the lines exposed above. Since the cost of the
latter is analogous to that of the former (both scale
essentially as the square of the size of the basis set), we

conclude that determining structural properties by our
technique costs roughly as much as by the "strain tech-
nique. " We stress, however, that our technique is ex-
pected to be more accurate, as it requires less numerical
differentiation (none at all in the case of elastic con-
stants, first derivatives for nonlinear elastic constants,
and so on).

We are grateful to R. Resta for a critical reading of
the manuscript. This work has been partially supported
by the Italian Ministry of Education through Centro In-
teruniversitario di Struttura della Materia, and by the
Swiss National Science Foundation under Grant No.
2.683-085, and is part of the collaborative project be-
tween Scuola Internazionale Superiore di Studi Avanzati
and Centro di Calcolo Elettronico Interuniversitario
dell'Italia Nord-Orientale, Italy.

'R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. 8
1, 910 (1970).

P. D. DeCicco and F. A. Johnson, Proc. Roy. Soc. A 310,
111 (1969).

O. H. Nielsen and R. M. Martin, Phys. Rev. B 32, 3780
(1985).

Nielsen and Martin, Ref. 3a, p. 3792.
4S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58,

1861 (1987).
5For a review of the literature on the use of the virial

theorem in solid-state physics, see Ref. 3a.
D. R. Hamann, M. Schliiter, and C. Chiang, Phys. Rev.

Lett. 45, 566 (1980).
7A. Baldereschi, Phys. Rev. B 7, 5212 (1973); D. J. Chadi

and M. L. Cohen, Phys. Rev. B 8, 5747 (1973).
sSee, for instance, M. T. Yin, in Proceedings of the Seven

teenth International Conference on the Physics of Semicon
ductors, San Francisco, California, 1984, edited by D. J.
Chadi and W. A. Harrison (Springer-Verlag, New York,
1985), p. 927.

2665


