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Theory of the Stripe Phase in Bend-Freedericksz-Geometry Nematic Films
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An outstanding problem in the physics of nematic films is the stripe phase which appears in the bend
Freedericksz geometry at temperatures slightly above that of the nematic to smectic-4 phase transition
in a su%ciently strong magnetic field. It is argued, by use of linear stability analysis, that in fact two
transitions occur: the usual Freedericksz transition to a uniformly distorted state, followed by a second
transition to a stripe phase at a slightly higher field. Qualitative agreement is found between experimen-
tal results and theoretical predictions.
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A periodic equilibrium configuration of the nematic
director, giving rise to a stripe or ripple phase, has been
experimentally observed in thin-film liquid crystals in an
external field with appropriate boundary conditions. '

We consider here the bend Freedericksz geometry where,
in the absence of a field, the director n is uniformly
aligned perpendicular to the plates forming the film
boundaries. The field is applied in the film plane, i.e. ,
perpendicular to n. In this geometry, stripes have been
observed slightly above T~z, the nematic to smectic-2
transition temperature. Thus the new phase occurs when
the ratio of the splay to bend elastic constants is small.

Although various suggestions have been made, ' a
satisfactory explanation of the stripe phase in this
geometry has not been found. In contrast, for the splay
and twist Freedericksz geometries, an explanation has
been given. ' ' There, when the elastic constants are
sufficiently anisotropic, a transition from the uniform to

the stripe phase replaces the usual Freedericksz transi-
tion as it occurs at a lower threshold field. However, for
the bend geometry, this model is not applicable; the uni-
form phase does not become unstable with respect to a
striped structure. Thus a difI'erent explanation is re-
quired. By considering the Frank elastic free energy and
using linear stability analysis, we find that the usual
bend Freedericksz transition always occurs but that, for
certain elastic-constant ratios, the uniformly distorted
Freedericksz state is unstable against the formation of
stripes. This second instability occurs in a field only
marginally higher than that of the initial phase transi-
tion, except for a narrow diverging region (see Fig. I ).
Rapid divergence of the bend elastic constant in the
stripe regime suggests a bend expulsion mechanism, as
opposed to the splay avoidance which clearly prevails in
the polymer problem.

Consider the usual Frank free energy in the dimen-
sionless form

F= —,
' d r jM(2/tr) (V n) +NM(2//tr) (n Vxn) +(2/tr) (nxVxn) —h (n x) j.

n =x sinOcosp+ y sinOsinp+ zcosO, (2)

Here n(r) is the director, M =Ki/K3, N =K2/Ki, F is in
units of tr K3d/8, lengths in units of d/2, and the field h
in units of (tr/d)(K3/Z, )' . Ki, Kq, and K3 are the
splay, twist, and bend elastic constants, respectively, d is
the film thickness, and X, is the anisotropy of the mag-
netic or electric susceptibility which must be positive.
The field is in the plane of the film along x.

For homeotropic boundary conditions, a suitable form
satisfying n =1 is
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where h is normal to the film plane at the boundaries. In
the undistorted phase n =z or 0 =0. In the uniformly (in
the film plane) distorted state induced by the usual
Freedericksz transition, n=xsinO+zcosO with 0=0(z).
In general, both 0=0(r) and p =p(r) are nonzero.
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FIG. 1. Plots of the stripe threshold field, h„as a function

of the ratio of elastic constants Kl/K3 for three values of'

K2/Kl. 0.75, 0.50, and 0.25. The corresponding end-point
values of Ki/K3 at which h, diverges are 0.058, 0.080, and
0. 1 38.
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However, the Euler-Lagrange variational equations for 0 and p obtained from Eq. (1) are too complicated to solve ex-
actly.

A simpler procedure uses linear stability analysis. Here, the stability of a configuration is checked with respect to
small perturbations. This yields the stability limit for the phase being considered. For a continuous transition, this is
identical to the actual phase boundary.

For the undistorted nematic, the equilibrium value of 0 is zero, p being irrelevant. In the bend geometry, we obtain
to second order in these variables

F~ = —,
' d r[M(2/x) 0 +NM(2/x) 0 +(2/x) 0 —h 0 j (3)

the subscripts denoting partial differentiation. F~ is in-
dependent of p in the bend geometry. This is not the
case for the splay and twist geometries, where p depen-
dence leads to instability crossover.

The solution of the Euler-Lagrange equation obtained
by minimization of Fz with the boundary condition
0(z = + 1) =0 is 0=0pcos(lt'z/2), with 0p arbitrary. At
h =1, F~ changes sign and this is the usual Freeder-
icksz transition for the bend geometry. It is independent

! Lagrange equation. We should thus substitute Eq. (4)
into Eq. (1), keep terms to second order in 5, p, and
their derivatives, and minimize the resulting expression.
This results in a pair of linear, coupled, partial differ-
ential equations for 5 and p. But, motivated by experi-
ment, we used a different approach, assuming a priori
that d, and p are periodic in y and independent of x. We
set

(6)

of M and N. This is strongly supported by the results of a(r) =af(z)cos(qy), y(r) =pg(z)cos(qy+y), (5)
Gooden et al.

ow consider the local stability for lt & 1 of the where a,p are infinitesimal amplitudes, q is the (dimen-

uniformly distorted state Let sionless) y-direction wave vector, and f, g, and y are
determined by free-energy minimization. Since 8'is not

0(r) =W(z)+~(r), y=y(r), (4) small, it must therefore be kept in F to all orders.
We now expand F in a and P. The leading term, Fq

where W(z) is the exact solution of the full Euler- is just the free energy of the uniformly distorted
Freedericksz state and is

FB = —,
'

&
d r[M(2//rr) W, sin W+(2/x) W, cos2W' —h sin Wj.

Since 0= W, p =0 is an extremum of F, there is no contribution linear in a or p. The second-order terms are

Fz = —,
' A[a (Al+q A2)+P (B~+q B2)+2aPqC],

where
(7)

I

Al = dz[f cos(2W)[(2/x) (M —1)W, —h ]+2(2/x) (M —1)ff,W, sin(2W)+(2/x) f, [Msin W+cos W]j,
1

1 ~1
A2=(2/x)

&
dzNMf, B~ = dz[h g sin W+(2/x) g, sin W[NMsin W+cos W]j,

] gl
82=(2/z) dzMg sin W, C=siny(2/z) dz[ —, (M+1)fgW, sin(2W)+Msin W[gf, +Nfg, ]j,dp dp

(8)

and 8 is the dimensionless area of the sample in the film
plane To min. imize Fq, we set y =x/2.

We now determine the minimum field in which F~
vanishes with a,pa0. In principle, this field, which
determines the stability limit, should be found by the
solution of the coupled pair of Euler-Lagrange equations
for f,g obtained by setting 6F& =0. While these equa-
tions are functions of a single variable only, they are nev-
ertheless not amenable to analytic solution. We there-
fore use a different approach, which yields a field h =h,
which is a rigorous upper bound on the stability limit.

Our procedure was to choose trial functions f,g con-
sistent with the boundary conditions f(~ 1) =0. Then,
for fixed h, N, and T, the quantities 4;, B;, and C were
calculated numerically from Eq. (8). [This requires that
W(z) first be calculated from Eq. (6).] Since Fz is a
quadratic form, it vanishes at a critical point for nonzero

w]+w2q'

Cq

Cq

Bi+B2q 2 =0.

For Eq. (9) to have a solution with q real, it is neces-
sary (and sufficient) that

D =C —A (B2 —A2B( —2(A|A28)Bp) & 0. (10)

The condition D (0 for h =1 causes the minimum value
of h to occur at D =0. We therefore increased h in small
increments for h =1 and varied our trial function so as to
maximize D. This was repeated until we could attain
D =0 with appropriate trial functions f,g.

After considering a number of possible trial functions,
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E
&
=77.7 x 10

g, =2.8x10 -'+2.07 x10 —'~ -'"'
K3 =3.1 ~10 '+1.86 X 10

(12)

where r =(T—T~~)/T~~, T is the absolute tempera-
ture, and T~~ =339.93 K. These expressions are valid
for 10 5(r (2x10 . They yield the (M, N)-plane
trajectory in Fig. 2 containing the points P and X. The
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FIG. 2. Phase diagram showing the region where the stripe
phase is predicted to exist. Also sho~n is a trajectory contain-
ing the points P and 4' (which does not separate difTerent re-
gimes of phase stability) which traces the experimentally ob-
served elastic-constant ratios of the liquid-crystalline material
8OCB. Details are given in the text.

we found that

f=(1 —z ), g=z', 0(z(1,
gave the best (minimum) value for the instability thresh-
old field h =h, . Thus our variational procedure reduced
to changing a and b so as to attain D =0 at the lowest
possible value of h. Optimum values were a =1.6 and
b =1.0 at M=0. 1 and N=0. 25. In general, the result-
ing h, was not sensitive to these parameters.

Our results are summarized in Figs. 1 and 2. In Fig.
1, we give the normalized stripe threshold field h, as a
function of M=Ki/K3, for three values of N=Kq/Ki.
For given K2/Kit we found that h, diverges at a corre-
sponding end-point value of Kl/K3. In other words, the
Freedericksz bend state becomes unstable only when

K]/K3 is less than this end-point value; it remains stable
for any greater value of K&/K3. The end-point value de-
creases with increasing Ki/Kq.

Turning to Fig. 2, each point on the "theory" line cor-
responds to a value of Kz/Kl and the associated end-

point value of Ki/K3. The regime in which a stripe
phase is predicted to appear (above the appropriate
threshold field) is so marked.

In order to compare our results with experiment, the
elastic constants must be known. Using measurements

by Gooden et al. for octyloxycyanobiphenyl (8OCB)
and scaling with the absolute measurements of Madhu-
sudana and Pratibha, " we can parametrize the elastic
constants (in dynes) by

former corresponds to T —T~~ =0.06 K and the latter to
T —T~~ =0.01 K. As T approached T~~, the elastic-
constant ratios for 8OCB move along the trajectory with

Ki/K& decreasing. Experimentally, stripes are observed
when Ki/K3 is less than 0.087 (i.e., point P)

Although our calculations predict that stripes should

appear only at point X and not at point P on the trajecto-
ry, it is important that both theory and experiment ex-
hibit an end-point value of t above which stripes cannot
occur. The rapid increase of h, at this end-point value is

approached is also in agreement. We do not believe
that the discrepancy is serious since the experimental
trajectory for 8OCB nearly parallels the theoretical
stripe-regime boundary. Thus small changes in the
values of the elastic constants or better trial functions
could result in a large shift in the end-point value of f..

A further point of comparison is the wave vector q for
the stripe phase at threshold. From Eq. (9), we find that
when D =0,

q = (C —A|B2 —4 2B i )/(2A2B2). (13)

Typical values of X =md/q are a few tenths of the film
thickness d. The same order of magnitude is observed
experimentally. ' Notice that k never becomes infinite
(i.e. , the uniform, Freedericksz, and stripe phases never
meet at a common point).

The effect of a small deviation of the magnetic held
direction from the film plane was also investigated. This
results in a slight shift of the h, vs Kt/K3 curves shown
in Fig. 1 to the left and upward.

Although it is encouraging that our analysis explains
the observed periodic director configurations in the bend
Freedericksz geometry, several avenues for future anal-
ysis are apparent. These include determining (1) wheth-
er the phase transition to the stripe phase is indeed con-
tinuous, occurring at the stability limit, or whether it
occurs at a lower field via a first-order transition; (2)
whether more complex instability modes exist under suit-
able conditions; (3) the mechanism, e.g. , bend and/or
splay expulsion, for stripe onset;' and (4) more accurate
trial functions f and g. Experimentally, accurate mea-
surements of the elastic constants for diAerent liquid
crystals as well as determinations of the stripe periodicity
are necessary for a more quantitative evaluation of our
model.

In summary, the behavior of a thin nematic film in the
Freedericksz bend geometry has been examined as a
function of applied field strength and anisotropy of the
elastic constants. The usual Freedericksz transition is
found always to occur. However, there is a further insta-
bility, resulting in the formation of a stripe config-
uration, in a higher field when the elastic constants are
su%ciently anisotropic. Qualitative agreement with ex-
periment is good, but quantitative comparison requires
additional data.
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