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Nonlinear State of m = 1 Instability in Tokamaks with Nonmonotonic q Profiles
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The nonlinear saturated state of the m =1, n =1 ideal MHD instability is calculated for a large-
aspect-ratio tokamak. When the q(r) profile is nonmonotonic with Aq =q;„—1 )0, the amplitude g of
the nonlinear state is given by g q "/Aq =7.9[(hq, /Aq) i —1], where hq, is the critical value of hq at
which the system is marginally stable. This nonlinear state is similar to that seen during the sawtooth
crash in large tokamaks and may be related to the steady-state oscillations seen when sawteeth are
suppressed by lower-hybrid current drive.
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Helical perturbations with mode numbers m = 1, n = 1

are a very common feature of toroidal plasma dis-
charges. In particular they appear to be an essential in-
gredient of the ubiquitous sawtooth relaxation oscilla-
tions in tokamaks. ' They are also seen in computer
simulations of tokamak discharges.

Although the linear theory of these perturbations has
been very fully explored, there are few analytic calcula-
tions of their nonlinear form. In this Letter we report
the calculation of the nonlinear state of the I=1, n =1
ideal-fluid instability in a toroidal discharge and com-
ment on its possible relevance to some observations on
tokamak sawteeth.

The nonlinear state of an m =1, n =1 ideal-fluid insta-
bility in a tokamak with a monotonically increasing q (r )
profile and a resonant surface at q =1 was calculated by
Rosenbluth, Dagazian, and Rutherford some time ago.
(Here q is the toroidal winding number, or "safety fac-
tor, " of the magnetic field line; in a cylindrical approxi-
mation q =rB,/RBa. ) However, for this resonant q pro-
file the ideal-fluid calculation leads to a singular current
layer on the q =1 surface —which indicates that nonideal
resistive eA'ects must be important. These may lead to a
completely diAerent state.

Here we consider a discharge with a nonmonotonic
q(r) profile, with q;„above, but close to, unity (Fig. l).
In this case the nonlinear state involves no singular cur-
rents. The ideal-fluid calculation is self-contained and
can be calculated exactly in an asymptotic expansion.
We find that the amplitude of the saturated helical de-
formation g, inside the q;„surface, is given by

&2q "/aq =7.9'(/3. q, //3. q) 3/2 —1],

where hq =q;„—1 and hq, is the critical value of hq at
which the discharge is marginally stable. This helical
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FIG. 1. Nonmonotonic q(r) profile.

state agrees well with the computer simulations where
just such a nonmonotonic q profile was used to simulate
the helical deformations seen in the Joint European
Torus (JET).

Before discussing the nonlinear calculation, we recall
some properties of the linear rn =1, n =1 instability.
The stability of a large-aspect-ratio roroidal plasma was
first correctly analyzed by Bussac et al. Their analysis
was recently extended by Hastie et al. who showed that
a profile such as Fig. 1 is unstable to m =1 perturbations
when hq is less than the critical value

Aq, =(2r(q")' (art (6W ~/R )

where q" is evaluated at r~ and R is the major radius.
The (negative) energy 6W is given in Refs. 6 and 7.
(This energy is the basic parameter of linear theory and
can be regarded as a known input for the nonlinear cal-
culation. ) When hq is small, the growth rate of the in-
stability is given by
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where y =3y /coA+Aq and coA is the toroidal Alfven
frequency.

In the linear calculation the parameters e=r 1/R,
y/cpA, and Aq are small and an optimal ordering
y/cuA=hq=e / is used. The lowest-order perturbation
is a rigid displacement for r & r] and there is a narrow
"inner" layer around r], of width hr] =e r], in which
plasma inertia is important. The perturbation in this
inertial layer is matched to that in the outer regions
where inertia is negligible. In the matching region the
m =1 component of the outer perturbation is

=gp+g2 with gp =const for r ( ri, gp=0 for r ) ri, and

ri d(2 ri2 6W
dr R (q —1)

(4)

We now consider the nonlinear saturated state of this
instability. Following Ref. 4, we search for a finite-
amplitude equilibrium which is accessible from the
linearly unstable one. The problem can again be sep-
arated into an inner layer around r& and two outer re-
gions. However, the inner layer is now determined by
nonlinear effects rather than inertia. With the ordering
used in the linear analysis, nonlinear eAects can be
neglected in the outer regions so long as the amplitude of
the deformation g is of order e or smaller. (We shall re-
turn to this point later. ) The perturbation in the outer
regions is then of the same form as in linear theory.

The nonlinear effects in the inner layer are important
for all (near) resonant harmonics with m/n =1, so that
we must consider a nonlinear helical equilibrium in the
layer. This is governed by

to

1 (I) dO 1
(9)(f+ )1/2 ( 2+ 2) '

and for
~
x

~
~, f(x) x . Hence the nonlinear dis-

placement has the form

g(0) "" a'+x'
g(x, 0) h(0)+ ~ dx —

16x' "P (f+g) '/

(io)

for x ~ ~. This must now be matched to the solution
in the outer regions [Eq. (4)].

We consider first matching the dominant m =1
Fourier component. This requires that

and

a +xh(0) = —„dx
aJ p f+g 1/2

4(p r 1

IItg(0) cosO =—
2R r] R

gp—
1 = cos0,

2

2
68'
(q")' (i2)

~ OO

dx —1 = —p cosO,Jp (f+ -)1/2 (i3a)

The calculation of the accessible nonlinear equilibrium
thus becomes one of finding functions f(x) and g(0)
satisfying Eqs. (9) and (11). Then (12) determines the
amplitude of the nonlinear state. It is convenient to re-
place f by a f, g by a g, and x by ax; then, in non-
dimensional form, these equations become

&'y =J, (y), (s)

where y is the helical flux function (krA11 —A, ). Be-
cause of the rapid radial variation in the layer, Eq. (5)
can be integrated to give

1 td 1

2x (f+g) '/2
1

1+x
1 t.

II&dO g (0) cosO = —X,
2K

(13b)

(13c)

(By/Br ) ' =F(y) +G(0). (6)
As in Ref. 4, we transform from y to the radius of
the equivalent surface in the unperturbed cylindrical
configuration:

dy/dx = (riBp/R) [Aq+ z x q "], (7)

with r =x+g. Then Eq. (6) may be integrated to give

~x 2+ 2

g(x, O)=J —
1 dx+h(0),

p (f+g ) 1/2

where f=f(x), g =g(0), and we have introduced the
parameter a =2Aq/q".

So far Eq. (8) merely describes a helical equilibrium.
To ensure that it is accessible from the initial unstable
equilibrium we must introduce the ideal MHD con-
straint (flux conservation), fr dr dO =const. This leads

f(x ) = (1+x ') '+ (p/z) '[24/(1+ x ') ']. (15)

Finally, the amplitude of the nonlinear displacement is

where p =—g q "/(8hq) and k=gpri6& /(Rhq) . We
take fgd0=0.

For the case of the resonant q(r) profile discussed in

Ref. 4, the equations corresponding to (13) could be
solved only by taking a trial function for g(0). It is

therefore surprising that the present problem can be
solved by an asymptotic expansion consistent with the or-
dering already adopted. In this ordering, p is a small
quantity =e', and after considerable algebra one finds,

up to O(p'),

g(0) = (8p/~) cos0+ 15(p/z) cos20

+ —, (p//r) [639cosO+ 135cos30], (14)

and
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[with use of Eq. (2)]
I

g q" 8 8x
hq 71 3

2
qc

h, q

& 3/2

(16)

This expresses the nonlinear saturated state in terms of
the strength of the instability dq, /hq.

There are some important points to be made about the
validity of Eq. (16). In deriving it, we have neglected all
nonlinear contributions from the outer regions and
matched only the m =1 Fourier components of the linear
displacement. With the ordering c=rt/R, y/roA=Aq

and an amplitude g(q ") 'l = e, the nonlinear
effects in the outer region are formally larger than those
in the inner layer. However, they vanish identically be-
cause the lowest-order displacement go is essentially a
rigid shift leaving the plasma in equilibrium. Conse-
quently, when the m ~1 Fourier components are included
in the matching one finds only small corrections to Eq.
(16). (These aspects of the problem will be discussed
elsewhere. ) In fact, Eq. (16) is asymptotically correct
with the stated ordering. We now see that for consisten-
cy this requires h,q, —Aq to be of higher order than h,q,
itself; i.e., the original equilibrium must be close to mar-
ginal stability. Then the nonlinear amplitude can also be
expressed in terms of the linear instability growth rate as

2
215 8n y (»)q

In summary, we have calculated the nonlinear state of
the unstable I=1, n =1 ideal MHD instability in a
large-aspect-ratio tokamak with a nonmonotonic q(r)
profile. This nonlinear state involves no singular current
layer and can therefore be considered complete within
ideal theory. Of course, although the general behavior of
the perturbed energy indicates that this nonlinear state
should be stable against further m =1, n =1 deforma-
tion, the question of its stability against other forms of
perturbation is an important question requiring further
investigation.

The amplitude of this nonlinear state agrees well with
the plasma simulations of JET. It may also account for
certain observations of precursor oscillations during the
sawtooth ramp on other tokamaks. In particular, the ob-
servations on PETULA ' and PLT, "when lower-hybrid

current drive was employed to stabilize the sawtooth
crashes, can be interpreted in this way. At intermediate
power levels, just sufficient to prevent the sawtooth
crashes, the precursor oscillations of the ramp phase de-
velop into steady state m =1, n =1 oscillations. (Similar
steady I =1, n =1 oscillations have been observed' on
JET during of-axis ion-cyclotron-resonance heating and
in DOUBLET IIIA under conditions of axial impurity
concentration. ' ) At still higher rf power levels on
PETULA, ' these oscillations disappeared altogether.
Hitherto these observations have been interpreted as sta-
bilization of a resistive mode "island" in a profile with

q =1 at the island radius. However, they might equally
be interpreted as the gradual reduction in the amplitude
of a nonlinear ideal MHD instability in a profile such as
Fig. 1 as hq increases towards Aq, .
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