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Decay Width and Shift of a Quasistationary State
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We develop a two-potential approach to the decay of a quasistationary state. The method enables us

to obtain a simple algebraic formula for the decay width and the energy shift of a metastable state. The
quasiclassical limit of the width found leads to the well-known Gamow formula, this time with a v ell-
defined preexponential factor. The energy shift together with its quasiciassical limit is obtained in closed
form.

PACS numbers: 03.65.Sq, 23.20.Ck, 23.60.+e

One of the textbook problems in quantum mechanics'
Is that of the lifetime of metastable states. Metastable
states arise as resonances in scattering reactions in a pro-
cess that starts with a free wave at infinity impinging on
a potential that distorts the wave and eventually traps it
in a quasibound state for a sizable amount of time, and
finally the decay occurs. It can be shown' that the reso-
nance generation process does not aAect the decay prop-
erties for long-lived states. Because of this fact and the
complications arising from the treatment of the full reac-
tion, it is preferable to deal directly with the decay to the
continuum of the quasibound state regarded at some ini-
tial time as a true bound state. The latter coincides with
nuclear radioactivity and is of great interest on its own.
In the following we focus on the problem of the decay of
a prepared state.

The decay width of a metastable state in the quasiclas-
sical limit was found long ago by Gamow. Even in this
treatment the preexponential factor appearing in the
width formula was hard to estimate except for the case
of high-lying states. Since then, little progress has been
made towards finding a general formula that embodies
the quasiclassical result of Gamow including the energy
shift in closed form.

We present here a s;mple algebraic expression for the
decay width and the energy shift of a metastable state in

a potential barrier of any shape, a typical example of
which is depicted in Fig. 1(a). The quasistationary state
possesses an energy E ( V(R) = Vp very close to Ep, that
of the bound state generated by U(r) of Fig. 1(b)
[U(r) = V(r) for r ~ R and U(r) = V(R) = Vp for r
& R]: therefore we split V(r) into U(r)+ ltV(r) [Fig.
1(c)], where 1V(r) =0 for r ~ Rand W, (r) = V(r) —Vp

for r & R. A two-potential formalism emerges straight-
forwardly.

Consider the state
~

&bp& which is an eigenstate of
Hp = V /2rrl + U(r) with eigenvalue Ep [Fig. 1 (b)].
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FIG. l. The potentials V, U, W, and W. ro, rl, rq are the
quasiclassical turning points.

At t =0 we switch on the distorting potential W(r) of
Fig. 1(c). ~4p) is no longer an eigenstate of the full
Hamiltonian H=Hp+8'(r) The wa.ve function is now
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expanded as

eo(r, t) =bp(t)e 'ep(r)+„d k(2tr) b~(t)e "e~(r)

in terms of bound (continuum) wave functions eo (eq) which are eigenstates of Hp Equ. ation (1) is supplemented
with the condition bp(0) =1, bg(0) =0. For the sake of simplicity we considered a case where the spectrum of Hp con-
tains only one bound state. Inserting Eq. (1) in the Schrodinger equation we obtain

i =bp(t)&ep
I
w

I
eo&+ d k (2') bg(t)e' &eo I

w
I eg),

dbp(t) (E, —E', )t

dt
(2a)

di =bp(t)(eel w
I
ep)e " ' +„d k'(2tr) b& (t)e "' (e~ I

w
I e&,).

dbt, (t ) (+k E0)g 7
3 t 3 t(Ek E )I

dt
(2b)

If bp(t) as a solution of Eqs. (2) is found such that for large times it drops as e ' we are confronted with a metastable
or resonant state.

An obvious problem which arises in Eq. (2b) is the noncompactness of W, since W(r) —V for r ~ [Fig. 1(c)].
Therefore singular pieces are generated in the matrix elements describing continuum-to-continuum transitions. In or-
der to solve this problem we introduce the potential W(r) =W(r)+ Vp that vanishes for r —~ [Fig. 1(d)]. We now

substitute

&y~ I
W

I y~) =&(t~ I
W

I yg &
—(2~) 'Vo~(k —k')

into Eq. (2b), and also define bq(t) =e 'bt, (t) Equations . (2) become

dbp(t)
i „=bp(t)(eo I

W
I
eo&+ „d'k(2') bt (t)e' ' ' " '&eo

I
W

I eg),
dt

(3a)

=b, (t)(e I
w

I e,)
' '" ' ""+ d'k'(2 ) 'b„,(t) ' " (e„l w

I
e„,).

dt aJ
(3b)

The Fermi "golden rule" can be now obtained by neglect of the continuum-to-continuum matrix elements in Eq. (3b),
namely

I = 2 „ I (eo
I

W
I et) I p(&a )~(&o+ Vo &t, )dFt, (4)

p being the density of final states and Et, =Vp+k /2m. Note that the same approximation in Eq. (2b) yields an er-

roneous result for the Fermi "golden rule" that has the wrong energy-conservation condition.
In order to account for the higher-order terms in Eq. (3b) we solve Eqs. (3) exactly. The simplest way of obtaining

the solution of'such equations is the Laplace transformation bp(t) — bp(e) After som. e algebra we find

ibo(&) =(& (eo I
w

I
eo& &eo I

WGW
I eo&)

where G is defined by

G = [(1 —A)/(e+ Eo+ Vo —Ho) ] (1+WG). (6)

so=(ep
I
w leo)+(ep I

wGwl eo& (7)

One can easily recover the Fermi "golden rule" [Eq. (4)]
f'rom Eq. (7) if one takes W=0 in Eq. (6).

In fact, we can derive Eq. (7) using the procedure of

Here A= Iep)(col is the projection operator onto the
state lep). The value of @=co for which a pole in bp(e)
arises determines the shift A=Re(ep) and the width

I = —2 Im(ep) of the metastable state; this can be seen'

by our taking the inverse Laplace transform of bp(e) and

looking for the leading contribution to the integral as
This pole appears in the second Riemann sheet

in the complex e plane. Therefore eo is defined by the
equation

Goldberger and Watson, ' by considering the resonance
as pole in a matrix element (po I

G
I po) of the full Green's

function G =[E+& /2m —V(r)] at E =eo+Eo Then.
introducing the level shift operator R =W+ WGW and

using the orthogonality of eigenstates of Ho, so that
GWI po& =GWI pp), we obtain Eq. (7) through a relation
between G, G, and R. A detailed derivation will be given

elsewhere. Here we only mention that the validity of Eq.
(7) does not depend on how many bound states the po-

tential U(r) has. Also we mention that the position of
pole in G depends only on the potential V(r). Therefore,
the value so+ Eo would not depend on a particular
decomposition of the potential V into U+ 8'.

Expanding lep) in partial waves and including the
centrifugal contribution to the potential in U(r), for
spherically symmetric potentials, we rewrite Eq. (7) in

terms of the radial wave function po, partial-wave index
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suppressed:

ep = Jr I pp(r) I
W(r)dr+ J dr dr'pp(r) W(r)G(E, r, r')W(r')pp(r'),

R R & R

where E =Ep+ t.p.

Our main approximation at this stage consists in re-

placing G by Gg, =[E+V /2m —Wl ', the propagator
corresponding to the interaction W(r) [Fig. 1(d)]. We
proceed in this manner for the following reasons: It is

only the projection operator A which makes a difI'erence
between G and G =[E+V /2m —V] '. The integration
region in Eq. (7) starts at r, r '~ R, where the contribu-
tion from A is not important. Therefore G can be re-
placed by Gg„since Gg, and G obey the same differential
equation because W(r) = V(r) for r ~ R. The
differences between G and Gg, arising from the inner
par'. r & R are minute, since both G and Gg, lack any
resonances at Ep. G because of the subtraction of A in

Eq. (6) and G~ because W(r) =Vp for r &R has no

pocket as does U(r) [see Figs. 1(a), 1(b)]. The nonres-
onance wave functions in the inner region r & r], Fig.
1(a), are suppressed approximately by a factor
expI —f„", [2m(V —Ep)] 't dr] and therefore the error
induced by the replacement G by G~ is of the order of
I (or ep). The exact estimation of the correction term
can be done by expansion of G in terms of G~. After
some lengthy algebra, which will be presented elsewhere,
we found that the correction term to our approximation,
G=-Gg„ is indeed of order |.p in accordance with intui-
tive arguments given above.

Thus omitting higher-order terms in ep we replace
E =Ep in the Green's function of Eq. (8). The partial-
' ave resolvent is

serting Eq. (9) in Eq. (8) and using ImZtI ~ =Zk we find

4m 2r = J v p(r) W(r)Xk(r)dr (10)

a formula which resembles the well-known result for an
isolated Breit-Weigner resonance. Equation (10) is
usually treated by means of some approximation scheme
or else by numerical integration. In our case, however,
we carry out an integration in Eq. (10) analytically with
no approximations. First we note that pp(r) =pp(R)
xexp[ —a(r —R)] for r ~ R, where a = [2m(Vp
—Ep)] 't . Then taking advantage of the fact that Zk is
an eigenfunction of the Schrodinger equation for the po-
tential W(r) =W(r)+ Vp we can replace W(r)Zt, (r) by
[Ep —Vp+ (1/2m)d /dr ]X~(r) in Eq. (10). After in-

tegrating by parts twice, we thus obtain

JI e "W(r)Zk (r)dr

e
—aR

2m
[aZk (R) +Xg (R) ]. (11)

All remaining integrals cancel. Here Xk(R) denotes the
radial derivative of Zk at r =R. Substituting Eq. (11)
into Eq. (10) we finally obtain a width

I ~.(R) [aZ, (R)+Z,'(R)]
I

'1

mk

Gg (Ep, r, r') = —,&t', (r & )Zt((«).
rr 'k (9)

4 2

I v'p(R)zk(R)
I
',

mk
(12)

Here Zk (Xkt+ ) is the regular (outgoing) eigenstate of
the Harniltonian —V /2m+ W(r), with an asymptotic
form sin(kr —trl/2+St) (exp[i(kr —trl/2+St)]), where
k =(2mEp) 't, r & =max[r, r'l, and r & —=min[r, r'l. In-

where we used Xk(R) = an't, (R), which is correct up to
terms of order exp( —2aR).

In a similar way one can find the energy shift, 6, by
performing an exact r,r' integration in Eq. (8). Detailed
algebra will be presented elsewhere. Here we give only
the final result for ep =d, —iI /2:

I ~p(R) I '[aZk(R)+Z,'(R)] [az,'+'(R)+Z„"'(R)],

where Z~~+~(R) is value of the outgoing wave function at
r=R. Equations (12) and (13) are the main results of
this work.

We have checked Eqs. (12) and (13) for two types of
potentials such as the square-well barrier and the "trad-
itional" e-decay model, ' where the analytical solution
of the leading terms for I and h, can be found with a
standard technique. Up to an accuracy of approxima-
tions used in Refs. 2, 7, and 8 the results agree exactly.

It is very interesting to investigate the quasiclassical
limit of our result. Then the bound-state wave function

t R
pp(R) =(JN/2 ja)exp —„ I p(r) I dr (14)

Prl
cos J p(r')dr' ——dr =1.

p(r) 'o 4
(I S)

where p(r) = [2m[Ep —V(r)]] 't and N is the quasiclas-
sical bound-state normalization factor:
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The wave function Zt, (R) in the quasiclassical limit is in Fig. 1, we obtain that the energy shift 5 in the quasic-
lassical limit is zero.

zk(R) = exp —„~p(r)
~
dr

2Ja
(i 6)

Substituting Eqs. (14) and (16) into Eq. (12) we obtain
f'r2

I = (N/4m)exp —2„~p(r)
~
dr (i7)

pR
d, = [NV'(R)/16a ]exp —2„~p(r)

~
dr (Is)

where V'(R) =dV(r)/dr ~, -g. It is interesting to note
that choosing R in such a way that V'(R) =0, as shown

For the high-lying states where po(r) strongly oscillates
one can replace the mean value of the squared cosine
term in Eq. (15) by —,'. Then N=4m/T where T is the
quasiclassical period of motion, and we obtain the
famous Gamow formula. However, our result, Eq.
(17), can also be used for low-lying states.

Equation (12) and its quasiclassical limit, Eq. (17),
are much simpler and more general than any other re-
sults for I obtained in a framework of diff'erent WKB-
type approximations or by a path-integral tech-
nique. ' " We also can demonstrate that for a low-lying
state, in the limit of V(r) ))Eo, Eq. (17) gives the same
result for I as that in the instanton method, " provided
the potential V(r) can be approximated by a harmonic
oscillator near the minimum.

Taking the quasiclassical limit of Eq. (13) we obtain
for the energy shift
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