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Torsion Constraints and Super Riemann Surfaces
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Super Riemann surfaces are important in superstring theories as the generalization of the bosonic
world sheet. In one approach to their study, one introduces two-dimensional supergravity, subject to cer-
tain conditions on the field strengths. Another approach builds super Riemann surfaces from supercon-
formal patching data with no mention of the constraints. We show the equivalence of these two ap-
proaches and in particular interpret the torsion constraints as integrability conditions of a certain geome-
trical structure.
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Bosonic string theory can be formulated in terms of
quantum fields on a surface of two dimensions —a world
sheet. In order to define an action for the fields, this sur-
face must be equipped with more than just its smooth
manifold structure. Namely, in the Euclidean formalism
the action depends on a conformal structure; given this,
we can define a Cauchy-Riemann operator 8 on the sur-
face X and take for the classical action Jxtix" tl*x",
where x" are fields on X. In fact, every conformal struc-
ture locally looks like the usual one on the plane, but glo-
bally this need not be the case. '

Clearly the above remarks depend on the fact that a
two-manifold with conformal structure can be regarded
as having just one complex dimension, so that Bx" can be
viewed as half a volume form on 4' and so tlx" 8*x"
=(B„x)(6„.x)du Adu* can be integrated without speci-
fying any additional information on A. In two or more
complex dimensions no corresponding differential opera-
tor can be defined; the complex structure alone does not
suffice to build a half-volume form invariantly from the
first derivatives of x". If we add additional data to X,
for instance, a metric, then in general X is no longer lo-
cally equivalent to the standard flat space.

In this light, the corresponding supersymmetric situa-
tion may at first seem problematic. The superstring has
a world sheet A with one even and one odd complex

coordinate: u, O. Indeed, to define an action it is not
enough to supply A with a complex structure: One must
give A a "superconformal structure. " In this Letter we
will compare two approaches to the study of such struc-
tures.

A complex manifold of dimension 1
~

1 with a super-
conformal structure is called a super Riemann surface,
or SRS. Friedan defines SRS using patching data.
Coordinate patches of the complex plane (L' ' are glued
together with use of transition functions of a very special
type. Let u, 0 be coordinates for C ' '. Then a coordi-
nate transformation is permitted only if it is holomorph-
ic, so that it transforms the vector fields 8/Bu, 8/F10 into a
linear combination of ti/Bu ', 8/80' (i.e., no 6/Bu *', tl/80*'
are allowed). Furthermore, it must specifically trans-
form the odd vector field D = tl/80+ 0 tl/Bu into a
nonzero multiple of D'=a a/'0+'08 B/u'. A consistent
set of such patching functions defines a SRS. (Alterna-
tively, one may study SRS via Fuchsian groups on the
super half plane. ) Thus it is possible that not every
complex 1

~
1 manifold can be made into a SRS; on the

other hand, two distinct SRS could in principle be identi-
cal as complex manifolds, related by an analytic coordi-
nate transformation which does not preserve D. In fact,
only the first possibility is realized; thus the space of
compact SRS sits inside the space of compact complex
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manifolds.
An older approach involves two-dimensional super-

gravity. It was originally formulated locally and later
used globally to build supermoduli space. One first
notes that on an ordinary Riemann surface one can
specify a conformal structure by giving a metric y„, a
two-dimensional "graviton. " The 8* operator above is
then essentially the Levi-Civita covariant derivative V of
two-dimensional gravity. ' V is fixed uniquely by the con-
ditions that it preserve y and have no torsion. Using y
and V we build an action reproducing the original; of
course, it is invariant under those changes of y which do
not affect its conformal class, the Weyl transformations.

Thus we can think of the bosonic string world sheet as
a complex manifold built from pieces of (L by patching
functions, or as a "bare" real surface with an additional
globally defined structure. Each approach has its advan-
tages.

When we try to follow the second approach into super-
space, however, things are not so clear. We begin with a
bare real 2

i
2-dimensional manifold, for example H i or

more generally the surface X obtained from an ordinary
surface X by choosing a spin structure. ' X has real
coordinates y . One then introduces a family of frames
[E~] spanning TX, where the frame index 2 runs over
two ordinary and two odd directions: E, are even vec-
tors, while E, are odd vectors. E~=E~ B/By— thus
contains sixteen real superfield degrees of freedom.

Some of the fields in Ez are gauge artifacts, just as
the vierbein of general relativity contains spurious infor-
mation as a result of the local frame invariance. Even
taking this into account, however, E& contains many
more fields than the minimal graviton plus gravitino of
supergravity. One is therefore led to impose ad hoc cer-
tain constraints on the E~'s to be considered. This pro-
gram is described in four dimensions by Wess and
Bagger. " One first introduces still more degrees of free-
dom in the form of a connection on 4; p~. One then
defines the torsion and curvature of p~ and imposes con-
ditions on these tensors. These conditions in turn beget
others via the Bianchi identities; remarkably in the end
E~ and pz are so constrained as to include only de-
grees of freedom corresponding to the graviton and grav-
itino.

In two dimensions, one has V~ =E~+p~M, where B~
denotes E~ regarded as a differential operator and M is
the generator of SO(2), acting on frame indices. In a
complex basis M is diagonal with M, '= —M, *' =i,
M++ = —M =i/2. Define the tensors T and R by
[V~,V~] = —T~ii Vc+R~gM. One constrains the field
strengths by requiring '

T,b'=T fi"=T+ '=T '=0, T++'= —2. (1)

(Our index notation follows Nelson and Moore. ' ) A
real tensor, like T, has the property that T — is the
complex conjugate of T++', and so on. The normaliza-

tion chosen here is convenient in that the frame,

B " B BE,=, E+= +0, &~=0,
Bu B0 Bu' (2)

satisfies (1).
The constraints (1) are a bit mysterious. We will

show how they follow naturally from the imposition of a
superconformal structure on X. Some of the constraints
will be seen to come from the requirement that X be a
complex manifold, as has already been noted in D'Hoker
and Phong. ' But as we have indicated as SRS has more
structure than a complex manifold, so it is not surprising
that not all of the conditions arise in this way.

Let us first recast Friedan's definition slightly. '

While the vector field D =B/B0+ 0B/Bu is not in general
carried to itself across patch boundaries, still the space
X spanned by D is everywhere well defined. Thus X is a
complex 1

i
1-dimensional manifold endowed with a holo-

morphic subbundle of its holornorphic tangent:
& T ' L. Such a subbundle is called a distribution.
Since the Lie bracket satisfies

E,'
E+
E,'*
E'—

E,
E+
E,*

E

wr 0 0
U= 00w*r*

0 0

where A, B are even complex functions and I,h, are odd.
Clearly the action of U leaves unchanged the subspaceT' A of the complex tangent space if we take T' A' to
be spanned by E, and E+.

Any frame thus gives rise to an "almost-complex"
structure on A. Unlike the case of one complex dimen-
sion, however, not every such structure actually comes
from a complex manifold. For example, every complex
manifold admits local analytic coordinates such that we
can take E, =B/Bu, E+ =B/B0; in this basis the Lie
brackets all vanish: [E„E,] =[E„E+]=[E+,E+] =0.
Moreover, in any other basis related to this one by
GL(1

i 1,C) transformation we clearly have that the Lie
brackets of E„E+contain no E,*,E terms. Not every

[D,D] =2B/Bu,

we have that [D,D] together with D itself everywhere
span T' X. Conversely, given a complex A with a distri-
bution 23 satisfying this nondegeneracy condition, we can
easily recover a SRS in the sense of Friedan. '

If we regard an ordinary Riernann surface X as a bare
real manifold, then the imposition of a complex structure
can be thought of as reducing its structure group from
GL(2, Ilt) to the subgroup GL(1,C). ' Similarly a com-
plex structure on A' reduces GL(2

i 2, R) to the subgroup
GL(1

i 1,C). Such a reduction can be specified by giving
a frame E~ for A with the understanding that E~ is to
be identified with E~ =U~ E~, where U is a function
from A' to GL(1

i 1,C). In a complex basis such U have
the block-diagonal form
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frame has this property; thus a necessary condition for
an almost-complex structure to define a complex A is

with h, =0, A =8 . One also obtains an additional con-
dition on t&8, namely

t++ =t++ =t+ t+ t++' =2. (9)

t+ ~ =t+ — =0.

As before, we tacitly include the complex-conjugate
equations t, =0, etc. , in this list. Since S satisfies
the nondegeneracy condition mentioned below (3), half
of the conditions in each of (5)-(6) are actually redun-
dant: They are related to the others by Jacobi identities.

To compare the constraints (5), (6) with (1) we first
note that from the definitions

rAB TAB + 2/[A MB]

Thus, of the seven independent complex conditions in

(1), two come from the two independent conditions in
(5) (Ref. 13) and one more comes from (6).

The remaining four conditions in (1) merely serve to
fix a convenient gauge and a unique SO(2) connection,
as follows. If D is a vector field in 2), we do not neces-
sarily have [D,D] =0, since D is odd. In fact, we require
this bracket to be nowhere vanishing, since as mentioned,
we want [D,D] and D to span all of T' A'. ' Thus by a
normalization choice we can restrict our attention to only
those frames for which

[E+,E+] =2E, +fE+ (8)

for some function f on A. For example, the standard
frame E~ on C' ' is normalized in this way [Eq. (3)].
With the choice (8) the structure group is further re-
duced from G] to the subgroup G & G i consisting of U

where [Eq,EB] =rqB Eq defines t [E. q. (5) is equiv-
alent to requiring that the "Nijenhuis tensor" should
vanish. ] Equation (5) is satisfied by the brackets t&B of
the standard frame E&. Just as in the case of ordinary
manifolds, (5) is, in fact. sufficient for X to be complex.

In order to discuss manifolds L equipped with a distri-
bution X we can again introduce frames E~, but now
only identify them under the action of a subgroup
Gl &GL(1

i 1,C). Gl consists of matrix functions U~ as
in (4) but with 4 —=0. Then Xl is simply the space
spanned by E+., 2) is then by definition invariant under
Gl transformations. We will call a frame satisfying (5)
and defined up to local G] transformations an "almost-
supercon formal structure. "

When does an almost-superconformal structure come
from a genuine SRS? The general theory of reductions
of the structure group again gives a necessary condition
for E& to be locally equivalent to the standard F& on a
patch of (I

'I' ' Namely those components of the
standard t~~ which remain unchanged under the trans-
formations of G] each give rise to a condition on the
given i&B Since Gi . is smaller than GL(1 i 1,C) there
will be more of these conditions than the ones in (5). In
fact, one obtains (5) plus

Unlike the integrability conditions (5) and (6), (9) is
just a gauge condition which sometimes simplifies formu-
las.

We can further simplify Ez by another gauge choice
analogous to (8): We require that

2t+ — + t+++ —=0. (10)

It is easy to show that given any Ez this condition can
always be arranged by a suitable transformation in G
without encountering any global obstruction. Also, the
residual symmetry group after (10) is imposed is precise-
ly the group of super Weyl and U(1) transformations
studied in Ref. 7.

Given a frame e, on an ordinary Riemann surface, we
can define a metric by declaring e, to be orthonormal,
thus reducing the structure group from GL(I,C) to a re-
sidual U(1). Demanding further that T„.' —=0 fixes a
U(1) connection by (7). Similarly in the super case we
fix a unique connection p„p+ by imposing the two condi-
tions

T„*' = T++ =0.

Together with (9) and (10) these account for the rest of
the constraints.

In fact, it is already well known that constraints like
(11) are "conventional, " since they serve only to fix a
connection. ' Moreover it has been shown that in two
dimensions all the torsion constraints are "conventional"
in the sense that given an arbitrary frame and connection
Vz one can construct another Vz satisfying all the con-
straints. ' We would like to distinguish the two uses of
the word conventional in the previous sentences. We will

call (11) inessential constraints because they serve only
to fix a connection, and the connection never enters into
the string action (see below). Similarly (9)-(10) are
inessential because they fix part of the gauge group G&,
while the action turns out to be Gi invariant. On the
other hand (5)-(6) are essential because they enforce
properties of the frame which are gauge invariant and do
enter the action. One can view the result in Ref. 18 as
providing a projection from the space of all frames to the
integrable ones, but not as a statement that integrability
is unnecessary.

The torsion constraints of two-dimensional supergravi-
ty thus fall into three classes with distinct geometrical
meanings: (5) and (6) follow from the integrability of a
reduction of the structure group of the manifold A from
GL(1 i 1,C) to the group Gi. The other conditions de-
scribe a particular gauge choice and serve to fix a con-
nection. Of these constraints only the integrability con-
ditions are the important ones, just as on an ordinary
Riemann surface. In the latter case we mentioned how
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the conformal structure alone was enough to define an
intrinsic operator 8 and hence the action. Given a frame
e one can choose a coordinate u conformal for this
frame and let &=due„'t), ; the connection never enters.
Similarly, a superconformal structure alone su%ces to
define the differential operator

E'E
8=(dude)det, + 8+.

0 8
(12)

For convenience we have chosen the normalization (9),
but this is not essential. In (12) dud& is the Berezin
volume form, det is the Berezin determinant, and 8+ is

E+ regarded as a differential operator. One can readily
show that 8 is invariant under arbitrary holomorphic
changes of coordinates and under local G transforma-

A A~
tions of E~. Thus Bx" t) x" is once again a volume form
on X (at least when 4' is compact' ). In fact, t) is essen-
tially the operator introduced in Ref. 7, presented in a
way which makes clear its invariance under all of G, not
just the super-Wey[x U(1) subgroup. It relies on the
first kind of torsion constraints but not on the others.

There are advantages in writing 8 in this way. First,
(12) makes clear all of the gauge symmetries of the
string action. Also, since some of the constraints (1) are
not essential, we can save ourselves the trouble of solving
the full set of constraints explicitly.

On an ordinary two-dimensional complex manifold
none of this would have worked: Even given a distribu-
tion 2), a formula similar to (12) would fail to be G in-

variant. The beautiful fact about SRS which makes
(12) work is that in the Berezin integral dH transforms
as the inverse of a spinor. Thus it is possible for
dudodet( ) to cancel the G transformation of E+,
just as du e„' canceled the transformation of 9, above.

Supermoduli space now consists of superconformal
structures modulo diffeomorphisms. It is smaller than
the space of complex structures modulo diffeomorphisms,
since one has the additional constraints (6). However,
any family of inequivalent SRS remains nontrivial when

regarded as merely a family of complex manifolds, as
one sees by analyzing the respective deformation prob-
lems. Thus supermoduj. i space sits inside the space of
complex structures. From this we can conclude that |I*
varies holomorphically to all orders in moduli, as in the
ordinary case, ' a fact which is important for holomorph-
ic factorization. We will study supermoduli space in
greater detail in Ref. 5.

One can think of super Riemann surfaces as uncom-
fortably poised between one and two dimensions. We
cannot combine the coordinates u and 0 of A into a sin-

gle coordinate, the way we combine the two real coordi-
nates y' of A into u. We can, however, define a canoni-
cal holomorphic line bundle on 4;. these are the half-
volume forms above. Remarkably, we can also define a

differential operator 6 with values in this bundle. This
fact makes possible the definition of the superstring ac-
tion and first-order systems. It also allows us to gen-
eralize the machinery of determinant bundles and its re-
lation to algebraic geometry from the bosonic string to
the fermionic case.
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